Refine
Year of publication
- 2014 (3)
Document Type
- Article (2)
- Doctoral Thesis (1)
Language
- English (3)
Has Fulltext
- yes (3)
Is part of the Bibliography
- no (3)
Institute
Terrestrial climate and ecosystem evolution during ‘Greenhouse Earth’ phases of the early Paleogene remain incompletely known. Particularly, paleobotanical records from high southern latitudes are giving only limited insights into the Paleocene and early Eocene vegetation of the region. Hence, data from continuous well-calibrated sequences are required to make progress with the reconstruction of terrestrial climate and ecosystem dynamics from the southern latitudes during the early Paleogene.
In order to elucidate the terrestrial conditions from the high southern latitudes during the early Paleogene, terrestrial palynology was applied in the present study to two well-dated deep-marine sediment cores located at the Australo-Antarctic region: (i) IODP Site U1356 (Wilkes Land margin, East Antarctica) and (ii) ODP Site 1172 (East Tasman Plateau, southwest Pacific Ocean). The studied sequence from IODP Site U1356 comprises mid-shelfal sediments from the early to middle Eocene (53.9 – 46 million years ago [Ma]). For the ODP Site 1172, the studied succession is characterized by sediments deposited in shallow marine environments of the middle Paleocene to the early Eocene (60.7 – 54.2 Ma).
Based on the obtained pollen and spores (sporomorphs) results from the studied sequences of Site U1356 and Site 1172, this study aims to: (1) decipher the terrestrial climate conditions along the Australo-Antarctic region from the middle Paleocene to the middle Eocene; (2) evaluate the structure, diversity and compositional patterns of forests that throve in the Australo-Antarctic region during the early Paleogene; (3) understand the response of forests from the high southern latitudes to the climate dynamics from the early Paleogene; (4) establish a connection between the generated terrestrial palynomorph data and published Sea Surface Temperatures (SSTs) from the same cores.
To decipher the terrestrial climatic conditions on the Australo-Antarctic region, this study relies on the nearest living relative (NLR) concept that assumes that fossil taxa have similar climate requirements as their modern counterparts. This approach was applied to the sporomorph results of Site U1356 and Site 1172, following mainly the bioclimatic analysis. With regard to the structure and diversity patterns of the vegetation from the same region, the present study presents combined qualitative (i.e., reconstruction of the vegetation based mainly on the habitats of the known living relatives) and quantitative (i.e., application of ordination techniques, rarefaction and diversity indices) analyses of the fossil sporomorphs results.
The overall results from the paleoclimatic and vegetation reconstruction approaches applied in the present study, indicate that temperate and paratropical forests during the early Paleogene throve under different climatic conditions on the Wilkes Land margin and on Tasmania, at paleolatitudes of ∼70°S and ∼65°S, respectively.
Specifically, the sporomorph results from Site U1356, suggest that a highly diverse forest similar to present-day forests from New Caledonia was thriving on Antarctica during the early Eocene (53.9 – 51.9 Ma). These forests were characterized by the presence of termophilous taxa that are restricted today to tropical and subtropical settings, notably Bombacoideae, Strasburgeria, Beauprea, Spathiphyllum, Anacolosa and Lygodium. In combination with MBT/CBT paleotemperature results, they provide strong evidence for near-tropical warmth at least in the coastal lowlands along the Wilkes Land margin. The coeval presence of frost tolerant taxa such as Nothofagus, Araucariaceae and Podocarpaceae during the early Eocene on the same record suggests that paratropical forests were thriving along the Wilkes Land margin. Due to the presence of this kind of vegetation, it is possible to suggest that forests in this region were subject to a climatic gradient related to differences in elevation and/or the proximity to the coastline.
By the middle Eocene, the paratropical forests that characterized the vegetation of the early Eocene on the Wilkes Land margin were replaced by low diversity temperate forests dominated by Nothofagus, and similar to present-day cool-temperate forests from New Zealand. The dominance of these forests and the absence of thermophilous elements together with the lower temperatures suggested by the MBT/CBT and the sporomorph-based temperatures indicate consistently cooler conditions during this time interval.
With regard to the sporomorph results of Site 1172, this study suggests that three vegetation types were thriving on Tasmania from the middle Paleocene to the early Eocene under different climatic conditions. During the middle to late Paleocene, warm-temperate forests dominated by Podocarpaceae and Araucariaceae were the prevailing vegetation on Tasmania. The dominance of these forests was interrupted by the transient predominance of cool-temperate forests dominated by Nothofagus and Araucariaceae across the middle/late Paleocene transition interval (~59.5 to ~59.0 Ma). This cool-temperate forest was characterized by a lack of frost-sensitive elements (i.e., palms and cycads) indicating cooler conditions with harsher winters on Tasmania during this time interval. By the early Eocene, and linked with the Paleocene Eocene Thermal Maximum (PETM), Paleocene temperate forests dominated by gymnosperms were replaced by paratropical rainforests with the remarkable presence of the tropical mangrove palm Nypa during the PETM and the earliest Eocene. The overall results from Site U1356 and Site 1172, provide a new assessment of the terrestrial climatic conditions in the Australo-Antarctic region for validating climate models and understanding the response of high-latitude terrestrial ecosystems to the climate dynamics of the early Paleogene on southern latitudes.
The climatic conditions in the higher latitudes during the early Paleogene were further unravelled by comparing the obtained terrestrial and marine results. The integration of the obtained sporomorph data with previously published TEX86-based SSTs from Site 1172 documents that the vegetation dynamics were closely linked with the temperature evolution from the Australo-Antarctic region. Moreover, the comparison of TEX86-based SSTs and sporomorph-based climatic estimations from Site 1172 suggests a warm-season bias of both calibrations of TEX86 (i.e., TEX86Hand TEX86H), when this proxy is applied to high southern latitudes records of the early Paleogene.
Reconstructing the early Paleogene climate dynamics of terrestrial settings in the high southern latitudes is important to assess the role of high-latitude physical and biogeochemical processes in the global climate system. However, whereas a number of high-quality Paleogene climate records has become available for the marine realm of the high southern latitudes over the recent past, the long-term evolution of coeval terrestrial climates and ecosystems is yet poorly known. We here explore the climate and vegetation dynamics on Tasmania from the middle Paleocene to the early Eocene (60.7–54.2 Ma) based on a sporomorph record from Ocean Drilling Program (ODP) Site 1172 on the East Tasman Plateau. Our results show that three distinctly different vegetation types thrived on Tasmania under a high-precipitation regime during the middle Paleocene to early Eocene, with each type representing different temperature conditions: (i) warm-temperate forests dominated by gymnosperms that were dominant during the middle and late Paleocene; (ii) cool-temperate forests dominated by southern beech (Nothofagus) and araucarians across the middle/late Paleocene transition interval (~59.5 to ~59.0 Ma); and (iii) paratropical forests rich in ferns that were established during and in the wake of the Paleocene–Eocene Thermal Maximum (PETM). The transient establishment of cool-temperate forests lacking any frost-sensitive elements (i.e., palms and cycads) across the middle/late Paleocene transition interval indicates markedly cooler conditions, with the occurrence of frosts in winter, on Tasmania during that time. The integration of our sporomorph data with previously published TEX86-based sea-surface temperatures from ODP Site 1172 documents that the vegetation dynamics on Tasmania were closely linked with the temperature evolution in the Tasman sector of the Southwest Pacific region. Moreover, the comparison of our season-specific climate estimates for the sporomorph assemblages from ODP Site 1172 with the TEX86L- and TEX86H-based temperature data suggests a warm-season bias of both calibrations for the early Paleogene of the high southern latitudes.
Global warming, changes in the hydrological cycle and enhanced marine primary productivity all have been invoked to have contributed to the occurrence of widespread ocean anoxia during the Cenomanian-Turonian Oceanic Anoxic Event (OAE2; ~ 94 Ma), but disentangling these factors on a regional scale has remained problematic. We generated palynological and organic geochemical records that allow the separation of these forcing factors in a core spanning the OAE2 from Wunstorf, Lower Saxony Basin (LSB; North Gemany), which exhibits cyclic black shale–marl alternations related to the orbital precession cycle.
Despite the widely varying depositional conditions complicating the interpretation of the obtained records, TEX86H indicates that sea-surface temperature (SST) evolution in the LSB during OAE2 resembles that of previously studied sites throughout the proto-North Atlantic. Cooling during the so-called Plenus Cold Event interrupted black shale deposition during the early stages of OAE2. However, TEX86 does not vary significantly across marl–black shale alternations, suggesting that temperature variations did not force the formation of the cyclic black shale horizons. Relative (i.e., with respect to marine palynomorphs) and absolute abundances of pollen and spores are elevated during phases of black shale deposition, indicative of enhanced precipitation and run-off. High abundances of cysts from inferred heterotrophic and euryhaline dinoflagellates supports high run-off, which likely introduced additional nutrients to the epicontinental shelf resulting in elevated marine primary productivity.
We conclude that orbitally-forced enhanced precipitation and run-off, in tandem with elevated marine primary productivity, were critical in cyclic black shale formation on the northwest European epicontinental shelf and potentially for other OAE2 sections in the proto-Atlantic and Western Interior Seaway at similar latitudes as well.