Refine
Year of publication
Language
- English (523)
Has Fulltext
- yes (523)
Is part of the Bibliography
- no (523)
Keywords
- BESIII (18)
- e +-e − Experiments (17)
- Branching fraction (13)
- Particle and Resonance Production (8)
- Charm Physics (6)
- Quarkonium (6)
- Spectroscopy (6)
- Hadronic decays (5)
- Branching fractions (4)
- Exotics (4)
Institute
- Physik (521)
The decays of χc2→K+K−π0, KSK±π∓ and π+π−π0 are studied with the ψ(3686) data samples collected with the Beijing Spectrometer (BESIII). For the first time, the branching fractions of χc2→K∗K¯¯¯¯¯, χc2→a±2(1320)π∓/a02(1320)π0 and χc2→ρ(770)±π∓ are measured. Here K∗K¯¯¯¯¯ denotes both K∗±K∓ and K∗0K¯¯¯¯¯0+c.c., and K∗ denotes the resonances K∗(892), K∗2(1430) and K∗3(1780). The observations indicate a strong violation of the helicity selection rule in χc2 decays into vector and pseudoscalar meson pairs. The measured branching fractions of χc2→K∗(892)K¯¯¯¯¯ are more than 20 times larger than that of χc2→ρ(770)±π∓, which implies the effects are largely due to U-spin symmetry breaking, rather than just isospin symmetry breaking in charmonium decays.
We report the first observation of the semimuonic decay 𝐷+→𝜔𝜇+𝜈𝜇 using an 𝑒+𝑒− collision data sample corresponding to an integrated luminosity of 2.93 fb−1 collected with the BESIII detector at a center-of-mass energy of 3.773 GeV. The absolute branching fraction of the 𝐷+→𝜔𝜇+𝜈𝜇 decay is measured to be ℬ𝐷+→𝜔𝜇+𝜈𝜇=(17.7±1.8stat±1.1syst)×10−4. Its ratio with the world average value of the branching fraction of the 𝐷+→𝜔𝑒+𝜈𝑒 decay probes lepton flavor universality and it is determined to be ℬ𝐷+→𝜔𝜇+𝜈𝜇/ℬPDG 𝐷+→𝜔𝑒+𝜈𝑒=1.05±0.14, in agreement with the standard model expectation within one standard deviation.
Cross sections of the process 𝑒+𝑒−→𝜋0𝜋0𝐽/𝜓 at center-of-mass energies between 3.808 and 4.600 GeV are measured with high precision by using 12.4 fb−1 of data samples collected with the BESIII detector operating at the BEPCII collider facility. A fit to the measured energy-dependent cross sections confirms the existence of the charmoniumlike state 𝑌(4220). The mass and width of the 𝑌(4220) are determined to be (4220.4±2.4±2.3) MeV/𝑐2 and (46.2±4.7±2.1) MeV, respectively, where the first uncertainties are statistical and the second systematic. The mass and width are consistent with those measured in the process 𝑒+𝑒−→𝜋+𝜋−𝐽/𝜓. The neutral charmonium-like state 𝑍𝑐(3900)0 is observed prominently in the 𝜋0𝐽/𝜓 invariant-mass spectrum, and, for the first time, an amplitude analysis is performed to study its properties. The spin-parity of 𝑍𝑐(3900)0 is determined to be 𝐽𝑃=1+, and the pole position is (3893.1±2.2±3.0)−𝑖(22.2±2.6±7.0) MeV/𝑐2, which is consistent with previous studies of electrically charged 𝑍𝑐(3900)±. In addition, cross sections of 𝑒+𝑒− → 𝜋0𝑍𝑐(3900)0 → 𝜋0𝜋0𝐽/𝜓 are extracted, and the corresponding line shape is found to agree with that of the 𝑌(4220).
We search for the process e+e−→π+π−χcJ (J=0,1,2) and for a charged charmonium-like state in the π±χcJ subsystem. The search uses data sets collected with the BESIII detector at the BEPCII storage ring at center-of-mass energies between 4.18 GeV and 4.60 GeV. No significant π+π−χcJ signals are observed at any center-of-mass energy, and thus upper limits are provided which also serve as limits for a possible charmonium-like structure in the invariant π±χcJ mass.
Using e+e− collision data samples with center-of-mass energies ranging from 2.000 to 2.644 GeV, collected by the BESIII detector at the BEPCII collider, and with a total integrated luminosity of 300 pb^{-1}, a partial-wave analysis is performed for the process e+e−→K+K−π0π0. The total Born cross sections for the process e+e−→K+K−π0π0, as well as the Born cross sections f or the subprocesses e+e−→ϕπ0π0, K+(1460)K−, K+1(1400)K−, K+1(1270)K− and K∗+(892)K∗−(892), are measured versus the center-of-mass energy. The corresponding results for e+e−→K+K−π0π0 and ϕπ0π0 are consistent with those of BaBar and have much improved this http URL analyzing the cross sections for the four subprocesses, K+(1460)K−, K+1(1400)K−, K+1(1270)K− and K∗+K∗−, a structure with mass M = (2126.5 ± 16.8 ± 12.4)~MeV/c^{2} and width Γ = (106.9 ± 32.1 ± 28.1)~MeV is observed with an overall statistical significance of 6.3 σ, although with very limited significance in the subprocesses e+e−→K+1(1270)K− and K∗+(892)K∗−(892). The resonant parameters of the observed structure suggest it can be identified with the ϕ(2170), thus the results provide valuable input to the internal nature of the ϕ(2170).
Using e+e− collision data samples with center-of-mass energies ranging from 2.000 to 2.644 GeV, collected by the BESIII detector at the BEPCII collider, and with a total integrated luminosity of 300 pb^{-1}, a partial-wave analysis is performed for the process e+e−→K+K−π0π0. The total Born cross sections for the process e+e−→K+K−π0π0, as well as the Born cross sections f or the subprocesses e+e−→ϕπ0π0, K+(1460)K−, K+1(1400)K−, K+1(1270)K− and K∗+(892)K∗−(892), are measured versus the center-of-mass energy. The corresponding results for e+e−→K+K−π0π0 and ϕπ0π0 are consistent with those of BaBar and have much improved this http URL analyzing the cross sections for the four subprocesses, K+(1460)K−, K+1(1400)K−, K+1(1270)K− and K∗+K∗−, a structure with mass M = (2126.5 ± 16.8 ± 12.4)~MeV/c^{2} and width Γ = (106.9 ± 32.1 ± 28.1)~MeV is observed with an overall statistical significance of 6.3 σ, although with very limited significance in the subprocesses e+e−→K+1(1270)K− and K∗+(892)K∗−(892). The resonant parameters of the observed structure suggest it can be identified with the ϕ(2170), thus the results provide valuable input to the internal nature of the ϕ(2170).
Measurement of the e+e−→π+π− cross section between 600 and 900 MeV using initial state radiation
(2016)
We extract the e+e− →π+π− cross section in the energy range between 600 and 900 MeV, exploiting the method of initial state radiation. A data set with an integrated luminosity of 2.93 fb−1 taken at a center-of-mass energy of 3.773 GeV with the BESIII detector at the BEPCII collider is used. The cross section is measured with a systematic uncertainty of 0.9%. We extract the pion form factor |Fπ|2 as well as the contribution of the measured cross section to the leading-order hadronic vacuum polarization contribution to (g−2)μ. We find this value to be aππ,LO μ (600–900 MeV) = (368.2 ±2.5stat±3.3sys) ·10−10, which is between the corresponding values using the BaBar or KLOE data.
The decays of χc2→K+K−π0, KSK±π∓ and π+π−π0 are studied with the ψ(3686) data samples collected with the Beijing Spectrometer (BESIII). For the first time, the branching fractions of χc2→K∗K¯¯¯¯¯, χc2→a±2(1320)π∓/a02(1320)π0 and χc2→ρ(770)±π∓ are measured. Here K∗K¯¯¯¯¯ denotes both K∗±K∓ and K∗0K¯¯¯¯¯0+c.c., and K∗ denotes the resonances K∗(892), K∗2(1430) and K∗3(1780). The observations indicate a strong violation of the helicity selection rule in χc2 decays into vector and pseudoscalar meson pairs. The measured branching fractions of χc2→K∗(892)K¯¯¯¯¯ are more than 10 times larger than the upper limit of χc2→ρ(770)±π∓, which is so far the first direct observation of a significant U-spin symmetry breaking effect in charmonium decays.
The decays of χc2→K+K−π0, KSK±π∓ and π+π−π0 are studied with the ψ(3686) data samples collected with the Beijing Spectrometer (BESIII). For the first time, the branching fractions of χc2→K∗K¯¯¯¯¯, χc2→a±2(1320)π∓/a02(1320)π0 and χc2→ρ(770)±π∓ are measured. Here K∗K¯¯¯¯¯ denotes both K∗±K∓ and K∗0K¯¯¯¯¯0+c.c., and K∗ denotes the resonances K∗(892), K∗2(1430) and K∗3(1780). The observations indicate a strong violation of the helicity selection rule in χc2 decays into vector and pseudoscalar meson pairs. The measured branching fractions of χc2→K∗(892)K¯¯¯¯¯ are more than 20 times larger than that of χc2→ρ(770)±π∓, which implies the effects are largely due to U-spin symmetry breaking, rather than just isospin symmetry breaking in charmonium decays.
The processes 𝑒+𝑒−→𝐷+ 𝑠𝐷𝑠1(2460)−+c.c. and 𝑒+𝑒−→𝐷*+ 𝑠𝐷𝑠1(2460)−+c.c. are studied for the first time using data samples collected with the BESIII detector at the BEPCII collider. The Born cross sections of 𝑒+𝑒−→𝐷+ 𝑠𝐷𝑠1(2460)−+c.c. at nine center-of-mass energies between 4.467 GeV and 4.600 GeV and those of 𝑒+𝑒−→𝐷*+ 𝑠𝐷𝑠1(2460)−+c.c. at √𝑠=4.590 GeV and 4.600 GeV are measured. No obvious charmonium or charmoniumlike structure is seen in the measured cross sections.