Refine
Document Type
- Article (7)
- Doctoral Thesis (1)
Has Fulltext
- yes (8)
Is part of the Bibliography
- no (8)
Keywords
- Asian tiger mosquito (2)
- Invasive species (2)
- Species distribution modelling (2)
- Aedes aegypti (1)
- Aedes albopictus (1)
- Asian bush mosquito (1)
- Biogeography of disease (1)
- Climate change (1)
- Climatic habitat suitability (1)
- Diseases (1)
The genus Ebolavirus comprises some of the deadliest viruses for primates and humans and associated disease outbreaks are increasing in Africa. Different evidence suggests that bats are putative reservoir hosts and play a major role in the transmission cycle of these filoviruses. Thus, detailed knowledge about their distribution might improve risk estimations of where future disease outbreaks might occur. A MaxEnt niche modelling approach based on climatic variables and land cover was used to investigate the potential distribution of 9 bat species associated to the Zaire ebolavirus. This viral species has led to major Ebola outbreaks in Africa and is known for causing high mortalities. Modelling results suggest suitable areas mainly in the areas near the coasts of West Africa with extensions into Central Africa, where almost all of the 9 species studied find suitable habitat conditions. Previous spillover events and outbreak sites of the virus are covered by the modelled distribution of 3 bat species that have been tested positive for the virus not only using serology tests but also PCR methods. Modelling the habitat suitability of the bats is an important step that can benefit public information campaigns and may ultimately help control future outbreaks of the disease.
Background: The Aedes (Stegomyia) albopictus subgroup includes 11 cryptic species of which Ae. albopictus is the most widely distributed. Its global expansion associated with a documented vector competence for several emerging arboviruses raise obvious concerns in the recently colonized regions. While several studies have provided important insights regarding medical importance of Ae. albopicus, the investigations of the other sibling species are scarce. In Asia, indigenous populations within the Ae. albopictus subgroup can be found in sympatry. In the present study, we aimed to describe and compare molecular, morphological and bacterial symbionts composition among sympatric individuals from the Ae. albopictus subgroup inhabiting a Vietnamese protected area.
Results: Based on morphological structure of the cibarial armarture, we identified a cryptic species in the forest park at Bù Gia Mập in the south-eastern region of Vietnam. Analysis of nuclear (ITS1-5.8S-ITS2) and mitochondrial (cox1, nad5) markers confirmed the divergence between the cryptic species and Ae. albopictus. Analysis of midgut bacterial microbiota revealed a strong similarity among the two species with a notable difference; contrary to Ae. albopictus, the cryptic species did not harbour any Wolbachia infection.
Conclusions: These results could reflect either a recent invasion of Wolbachia in Ae. albopictus or alternatively a loss of this symbiont in the cryptic species. We argue that neglected species of the Ae. albopictus subgroup are of main importance in order to estimate variation of host-symbionts interactions across evolution.
Background: Aedes albopictus and Ae. japonicus are two of the most widespread invasive mosquito species that have recently become established in western Europe. Both species are associated with the transmission of a number of serious diseases and are projected to continue their spread in Europe.
Methods: In the present study, we modelled the habitat suitability for both species under current and future climatic conditions by means of an Ensemble forecasting approach. We additionally compared the modelled MAXENT niches of Ae. albopictus and Ae. japonicus regarding temperature and precipitation requirements.
Results: Both species were modelled to find suitable habitat conditions in distinct areas within Europe: Ae. albopictus within the Mediterranean regions in southern Europe, Ae. japonicus within the more temperate regions of central Europe. Only in few regions, suitable habitat conditions were projected to overlap for both species. Whereas Ae. albopictus is projected to be generally promoted by climate change in Europe, the area modelled to be climatically suitable for Ae. japonicus is projected to decrease under climate change. This projection of range reduction under climate change relies on the assumption that Ae. japonicus is not able to adapt to warmer climatic conditions. The modelled MAXENT temperature niches of Ae. japonicus were found to be narrower with an optimum at lower temperatures compared to the niches of Ae. albopictus.
Conclusions: Species distribution models identifying areas with high habitat suitability can help improving monitoring programmes for invasive species currently in place. However, as mosquito species are known to be able to adapt to new environmental conditions within the invasion range quickly, niche evolution of invasive mosquito species should be closely followed upon in future studies.
The Asian tiger mosquito Aedes albopictus, native to South East Asia, is listed as one of the worst invasive vector species worldwide. In Europe the species is currently restricted to Southern Europe, but due to the ongoing climate change, Ae. albopictus is expected to expand its potential range further northwards. In addition to modelling the habitat suitability for Ae. albopictus under current and future climatic conditions in Europe by means of the maximum entropy approach, we here focused on the drivers of the habitat suitability prediction. We explored the most limiting factors for Aedes albopictus in Europe under current and future climatic conditions, a method which has been neglected in species distribution modelling so far. Ae. albopictus is one of the best-studied mosquito species, which allowed us to evaluate the applied Maxent approach for most limiting factor mapping. We identified three key limiting factors for Ae. albopictus in Europe under current climatic conditions: winter temperature in Eastern Europe, summer temperature in Southern Europe. Model findings were in good accordance with commonly known establishment thresholds in Europe based on climate chamber experiments and derived from the geographical distribution of the species. Under future climatic conditions low winter temperature were modelled to remain the most limiting factor in Eastern Europe, whereas in Central Europe annual mean temperature and summer temperatures were modelled to be replaced by summer precipitation, respectively, as most limiting factors. Changes in the climatic conditions in terms of the identified key limiting factors will be of great relevance regarding the invasive potential of the Ae. albopictus. Thus, our results may help to understand the key drivers of the suggested range expansion under climate change and may help to improve monitoring programmes. The applied approach of investigating limiting factors has proven to yield valuable results and may also provide valuable insights into the drivers of the prediction of current and future distribution of other species. This might be particularly interesting for other vector species that are of increasing public health concerns.
Modellierung der klimatischen Habitateignung verschiedener krankheitsübertragender Vektorarten
(2018)
Der Klimawandel hat einen starken Einfluss auf die Verbreitungsgebiete von Arten. Infolgedessen kann sich das Verbreitungsgebiet von Arten verschieben, einschränken oder ausweiten. Bei thermophilen Arten wird vermutet, dass sie von den klimatischen Änderungen profitieren und sie sich wahrscheinlich ausbreiten werden. Eine solche Ausbreitung, wozu auch die Einwanderung von gebietsfremden Arten zählt, hätte nicht nur zahlreiche Konsequenzen für diese Ökosysteme, sondern könnte sich auch zu einem ernsten Gesundheitsrisiko entwickeln, wenn es sich bei den einwandernden Neobiota um Vektorarten handelt.
Stechmücken und Sandmücken, als blutsaugende Insekten, zählen zu den bekanntesten Vektorarten. Sie sind in der Lage, eine Vielzahl von Infektionskrankheiten wie das Denguefieber oder das Gelbfieber, aber auch protozoische Parasiten wie "Leishmania"-Arten zu übertragen. Als thermophile Arten sind viele dieser Vektoren aktuell in ihrer Verbreitung weitgehend auf tropische und subtropische Gebiete beschränkt. Eine Einwanderung in gemäßigtere Gebiete kann zu einer Einschleppung der durch sie übertragenden Erreger führen und damit zum Ausbruch von Infektionskrankheiten. Aufgrund der medizinischen Relevanz dieser Arten ist es essentiell, die räumliche Verbreitung, sowie die abiotischen Ansprüche der Vektorarten zu kennen, um deren mögliche Ausbreitung nachzuvollziehen.
Vor diesem Hintergrund beschäftigte sich die vorliegende kumulative Dissertation mit den klimawandelinduzierten Änderungen der Habitateignung verschiedener medizinisch relevanter Vektorarten. Dabei wurden die zwei invasiven Stechmückenarten "Aedes albopictus" (I-III) und "Aedes japonicus" (III), sowie zehn in Europa bereits vorkommende Sandmückenarten der Gattung "Phlebotomus" (IV), untersucht. Die Arbeit basiert auf vier (ISI-) Publikationen. Unter Verwendung ökologischer Nischenmodellierung wurden geeignete Gebiete unter aktuellen und zukünftigen Klimabedingungen bestimmt. Um dabei sowohl räumliche als auch zeitliche Aspekte zu berücksichtigen, wurden mehrere räumliche Skalen (Deutschland und Europa), sowie Zeitperioden (2030, 2050 und 2070) betrachtet. Des Weiteren wurden verschiedene Ansätze (einzelne Algorithmen und Ensemble-Modelle) zur Modellierung der Habitateignung verwendet.
Die Ergebnisse dieser Dissertation zeigen eine zukünftige klimawandelbedingte Ausweitung der geeigneten Gebiete für viele der betrachteten Vektorarten. So konnte gezeigt werden, dass die Habitateignung für "Aedes albopictus" in Deutschland (I) und in Europa (III) zukünftig deutlich zunimmt. Auch für die Sandmückenarten "Phlebotomus alexandri", "Phlebotomus neglectus", "Phlebotomus papatasi", "Phlebotomus perfiliewi" und "Phlebotomus tobbi" konnte eine deutliche Zunahme der klimatisch geeigneten Gebieten projiziert werden (IV).
Lediglich Arten, wie die Asiatische Buschmücke "Aedes japonicus" (III) und auch kältetolerantere Sandmücken, wie "Phlebotomus ariasi" und "Phlebotomus mascittii" (IV) scheinen weniger von diesen klimatischen Veränderungen zu profitieren und könnten in Zukunft sogar aktuell geeignete Gebiete verlieren (klimawandelinduzierte Arealverkleinerung). Bei "Aedes japonicus" konnte dies auf eine engeren Nische mit einem Optimum bei vergleichsweise niedrigen Temperaturen zurückgeführt werden (III).
Am Beispiel von "Aedes albopictus" wurden ferner Umweltfaktoren identifiziert, die die Verbreitung der Art limitieren (II). Als wärmeliebende Art spielen bei "Aedes albopictus" in Mitteleuropa insbesondere die niedrigen Temperaturen eine Rolle, während in Zukunft die Sommertrockenheit in Südeuropa zunehmend eine Rolle spielen könnte.
Nischenmodellierung stellt trotz ihrer vereinfachenden Annahmen und Unsicherheiten, eine hilfreiche Methode zur Untersuchung klimawandelinduzierter Arealverschiebungen dar. Mit Hilfe der Modellierungsergebnisse konnten Gebiete mit einem hohen Etablierungsrisiko für die Vektorarten identifiziert werden, welche daher im Fokus künftiger Überwachungsprogramme stehen sollten. In Zukunft könnten mehr Vektorarten geeignete Bedingungen in Mitteleuropa finden, wodurch die Vektordiversität zunehmen wird. Dadurch könnte auch das Risiko für einen Ausbruch der durch die Vektoren übertragenen Krankheiten steigen.
Auch wenn das Vorhandensein eines kompetenten Vektors eine unerlässliche Voraussetzung für den Ausbruch einer Infektionskrankheit darstellt, gibt es noch weitere Faktoren, wie das Vorhandensein des Erregers. In Bezug auf die Risikoabschätzung vektorassoziierter Krankheiten sollten neben der Verbreitung des Vektors und des Erregers auch die abiotischen Bedingungen für die Entwicklung des Erregers berücksichtigt werden. Neben neu eingewanderten Arten sollten zudem auch die heimischen Arten in Bezug auf ihre Vektorkompetenz untersucht werden, da diese ebenfalls als potentielle Vektoren dienen und somit das Gesundheitsrisiko weiter erhöhen könnten.
Erratum to doi:10.1186/s13071-016-1853-2
Biological invasions have been associated with niche changes; however, their occurrence is still debated. We assess whether climatic niches between native and non-native ranges have changed during the invasion process using two globally spread mosquitoes as model species, Aedes albopictus and Aedes aegypti. Considering the different time spans since their invasions (>300 vs. 30–40 years), niche changes were expected to be more likely for Ae. aegypti than for Ae. albopictus. We used temperature and precipitation variables as descriptors for the realized climatic niches and different niche metrics to detect niche dynamics in the native and non-native ranges. High niche stability, therefore, no niche expansion but niche conservatism was revealed for both species. High niche unfilling for Ae. albopictus indicates a great potential for further expansion. Highest niche occupancies in non-native ranges occurred either under more temperate (North America, Europe) or tropical conditions (South America, Africa). Aedes aegypti has been able to fill its native climatic niche in the non-native ranges, with very low unfilling. Our results challenge the assumption of rapid evolutionary change of climatic niches as a requirement for global invasions but support the use of native range-based niche models to project future invasion risk on a large scale.
Background: Zika is of great medical relevance due to its rapid geographical spread in 2015 and 2016 in South America and its serious implications, for example, certain birth defects. Recent epidemics urgently require a better understanding of geographic patterns of the Zika virus transmission risk. This study aims to map the Zika virus transmission risk in South and Central America. We applied the maximum entropy approach, which is common for species distribution modelling, but is now also widely in use for estimating the geographical distribution of infectious diseases.
Methods: As predictor variables we used a set of variables considered to be potential drivers of both direct and indirect effects on the emergence of Zika. Specifically, we considered (a) the modelled habitat suitability for the two main vector species Aedes aegypti and Ae. albopictus as a proxy of vector species distributions; (b) temperature, as it has a great influence on virus transmission; (c) commonly called evidence consensus maps (ECM) of human Zika virus infections on a regional scale as a proxy for virus distribution; (d) ECM of human dengue virus infections and, (e) as possibly relevant socio-economic factors, population density and the gross domestic product.
Results: The highest values for the Zika transmission risk were modelled for the eastern coast of Brazil as well as in Central America, moderate values for the Amazon basin and low values for southern parts of South America. The following countries were modelled to be particularly affected: Brazil, Colombia, Cuba, Dominican Republic, El Salvador, Guatemala, Haiti, Honduras, Jamaica, Mexico, Puerto Rico and Venezuela. While modelled vector habitat suitability as predictor variable showed the highest contribution to the transmission risk model, temperature of the warmest quarter contributed only comparatively little. Areas with optimal temperature conditions for virus transmission overlapped only little with areas of suitable habitat conditions for the two main vector species. Instead, areas with the highest transmission risk were characterised as areas with temperatures below the optimum of the virus, but high habitat suitability modelled for the two main vector species.
Conclusion: Modelling approaches can help estimating the spatial and temporal dynamics of a disease. We focused on the key drivers relevant in the Zika transmission cycle (vector, pathogen, and hosts) and integrated each single component into the model. Despite the uncertainties generally associated with modelling, the approach applied in this study can be used as a tool and assist decision making and managing the spread of Zika.