Refine
Year of publication
- 2020 (1)
Document Type
- Article (1)
Language
- English (1)
Has Fulltext
- yes (1)
Is part of the Bibliography
- no (1)
Keywords
- coupon collector problem (1)
- matching (1)
- matroids, online algorithm (1)
- packing problem (1)
- secretary problem (1)
Institute
- Informatik (1)
We study online secretary problems with returns in combinatorial packing domains with n candidates that arrive sequentially over time in random order. The goal is to determine a feasible packing of candidates of maximum total value. In the first variant, each candidate arrives exactly twice. All 2n arrivals occur in random order. We propose a simple 0.5‐competitive algorithm. For the online bipartite matching problem, we obtain an algorithm with ratio at least 0.5721 − o(1), and an algorithm with ratio at least 0.5459 for all n ≥ 1. We extend all algorithms and ratios to k ≥ 2 arrivals per candidate. In the second variant, there is a pool of undecided candidates. In each round, a random candidate from the pool arrives. Upon arrival a candidate can be either decided (accept/reject) or postponed. We focus on minimizing the expected number of postponements when computing an optimal solution. An expected number of Θ(n log n) is always sufficient. For bipartite matching, we can show a tight bound of O(r log n), where r is the size of the optimum matching. For matroids, we can improve this further to a tight bound of O(r′ log(n/r′)), where r′ is the minimum rank of the matroid and the dual matroid.