Refine
Document Type
- Article (2)
- Doctoral Thesis (1)
Language
- English (3)
Has Fulltext
- yes (3)
Is part of the Bibliography
- no (3)
Institute
- Medizin (2)
- Biochemie und Chemie (1)
Ligands of Iron-Sulphur Cluster N2: In this work the ubiquinone reducing catalytic core of NADH:ubiquinone oxidoreductase (complex I) from Y. lipolytica was studied by a series of point mutations replacing conserved histidines or arginines in the 49-kDa subunit. Although the missing 4th ligand of cluster N2 could not be found in the 49-kDa subunit of complex I, it was clearly demonstrated that iron-sulphur cluster N2 resides directly on the interface between the PSST and 49-kDa subunits. The results presented in this work show that residues in the 49-kDa subunit have strong influence on this redox centre and also on catalytic activity. The strong influence of Arg-141 and His-226 residues in 49-kDa subunit on this cluster can be deducted from complete loss of N2 signals in EPR spectra such as in case of mutants H226A and R141A. In the case of mutant H226M the EPR signal from cluster N2 was shifted and cluster N2 even lost the pH dependence of its redox midpoint potential and became more similar to the other so called 'isopotential' clusters. Specifically in the case of mutants R141M and R141K the characteristic signature of cluster N2 became undetectable in EPR spectra. However, specific dNADH:DBQ oxidoreductase activity that could be inhibited with the specific complex I inhibitors DQA and rotenone was not absolutely abolished but rather reduced. These reductions in complex I activity did not correspond to similar reductions in the specific EPR signal of cluster N2 as it was observed in the His-226 mutant series. No indications could be found that these mutations had modified the magnetic properties of cluster N2, resulting in different EPR spectra. From these observations it could be concluded that both mutants R141K and R141M virtually or entirely lack iron-sulphur cluster N2. The rates in complex I activity could be reconciled with electron transfer theory: After removal of a single redox centre in a chain, electron transfer rates are predicted to be still much faster than steady-state turnover of complex I. These results from mutants R141K, R141M and also the result from mutant H226M that protons are being pumped even if the redox midpoint potential of cluster N2 is not pH dependent questions the prominent role in the catalytic mechanism of complex I that has been ascribed to cluster N2. Histidine 91 and 95 were found to be absolutely essential for activity of complex I since in both mutants complex I was fully assembled and artificial NADH:HAR activity was parental whereas complex I specific dNADH:DBQ activity was abolished. The signal from cluster N2 in EPR spectra was parental for all His-91 and -95 mutants. Mutations at the C-terminal arginine 466 affected ubiquinone affinity and inhibitor sensitivity but also destabilised complex I. All these results provide further support for a high degree of structural conservation between the 49-kDa subunit of complex I and the large subunit of water soluble [NiFe] hydrogenases. Remodelling of Human Pathogenic 49-kDa Mutations in Y. lipolytica: Y. lipolytica has been proven a good system for studying complex I properties and thus also for studying defects that occur in humans. In this work pathogenic mutations in the 49-kDa subunit of complex I were recreated and studied. The P232Q mutant showed non-assembly of complex I and this is probably the cause why this mutation was lethal in patients. The mutants R231Q and S416P were parental for the content, artificial and also specific complex I activity, Km for DBQ and IC50 for DQA. From these results we can conclude that these two residues Arg-228 and Ser-413 in mammalian cells have specific structural importance for the 49-kDa subunit even if they are not directly involved in catalytic process.
Proton pumping respiratory complex I (NADH:ubiquinone oxidoreductase) is a major component of the oxidative phosphorylation system in mitochondria and many bacteria. In mammalian cells it provides 40% of the proton motive force needed to make ATP. Defects in this giant and most complicated membrane-bound enzyme cause numerous human disorders. Yet the mechanism of complex I is still elusive. A group exhibiting redox-linked protonation that is associated with iron-sulfur cluster N2 of complex I has been proposed to act as a central component of the proton pumping machinery. Here we show that a histidine in the 49-kDa subunit that resides near iron-sulfur cluster N2 confers this redox-Bohr effect. Mutating this residue to methionine in complex I from Yarrowia lipolytica resulted in a marked shift of the redox midpoint potential of iron-sulfur cluster N2 to the negative and abolished the redox-Bohr effect. However, the mutation did not significantly affect the catalytic activity of complex I and protons were pumped with an unchanged stoichiometry of 4 H+/2e−. This finding has significant implications on the discussion about possible proton pumping mechanism for complex I.
We have studied the ubiquinone-reducing catalytic core of NADH:ubiquinone oxidoreductase (complex I) from Yarrowia lipolytica by a series of point mutations replacing conserved histidines and arginines in the 49-kDa subunit. Our results show that histidine 226 and arginine 141 probably do not ligate iron-sulfur cluster N2 but that exchanging these residues specifically influences the properties of this redox center. Histidines 91 and 95 were found to be essential for ubiquinone reductase activity of complex I. Mutations at the C-terminal arginine 466 affected ubiquinone affinity and inhibitor sensitivity but also destabilized complex I. These results provide further support for a high degree of structural conservation between the 49-kDa subunit of complex I and its ancestor, the large subunit of water-soluble [NiFe] hydrogenases. In several mutations of histidine 226, arginine 141, and arginine 466 the characteristic EPR signatures of iron-sulfur cluster N2 became undetectable, but specific, inhibitor-sensitive ubiquinone reductase activity was only moderately reduced. As we could not find spectroscopic indications for a modified cluster N2, we concluded that these complex I mutants were lacking most of this redox center but were still capable of catalyzing inhibitor-resistant ubiquinone reduction at near normal rates. We discuss that this at first surprising scenario may be explained by electron transfer theory; after removal of a single redox center in a chain, electron transfer rates are predicted to be still much faster than steady-state turnover of complex I. Our results question some of the central mechanistic functions that have been put forward for iron-sulfur cluster N2.