Refine
Document Type
- Article (4)
Language
- English (4)
Has Fulltext
- yes (4)
Is part of the Bibliography
- no (4)
Keywords
- Dendritic Cells (1)
- Gene Regulation (1)
- Innate Immunity (1)
- Interleukin (1)
- Interleukin-1 (1)
- Interleukin-36 (1)
- Macrophages (1)
- T-bet (1)
Institute
Interleukin (IL)-22 is a STAT3-activating cytokine displaying characteristic AU-rich elements (ARE) in the 3'-untranslated region (3'-UTR) of its mRNA. This architecture suggests gene regulation by modulation of mRNA stability. Since related cytokines undergo post-transcriptional regulation by ARE-binding tristetraprolin (TTP), the role of this destabilizing protein in IL-22 production was investigated. Herein, we demonstrate that TTP-deficient mice display augmented serum IL-22. Likewise, IL-22 mRNA was enhanced in TTP-deficient splenocytes and isolated primary T cells. A pivotal role for TTP is underscored by an extended IL-22 mRNA half-life detectable in TTP-deficient T cells. Luciferase-reporter assays performed in human Jurkat T cells proved the destabilizing potential of the human IL-22-3'-UTR. Furthermore, overexpression of TTP in HEK293 cells substantially decreased luciferase activity directed by the IL-22-3'-UTR. Transcript destabilization by TTP was nullified upon cellular activation by TPA/A23187, an effect dependent on MEK1/2 activity. Accordingly, IL-22 mRNA half-life as determined in TPA/A23187-stimulated Jurkat T cells decreased under the influence of the MEK1/2 inhibitor U0126. Altogether, data indicate that TTP directly controls IL-22 production, a process counteracted by MEK1/2. The TTP-dependent regulatory pathway described herein likely contributes to the role of IL-22 in inflammation and cancer and may evolve as novel target for pharmacological IL-22 modulation.
Resveratrol shows beneficial effects in inflammation-based diseases like cancer, cardiovascular and chronic inflammatory diseases. Therefore, the molecular mechanisms of the anti-inflammatory resveratrol effects deserve more attention. In human epithelial DLD-1 and monocytic Mono Mac 6 cells resveratrol decreased the expression of iNOS, IL-8 and TNF-α by reducing mRNA stability without inhibition of the promoter activity. Shown by pharmacological and siRNA-mediated inhibition, the observed effects are SIRT1-independent. Target-fishing and drug responsive target stability experiments showed selective binding of resveratrol to the RNA-binding protein KSRP, a central post-transcriptional regulator of pro-inflammatory gene expression. Knockdown of KSRP expression prevented resveratrol-induced mRNA destabilization in human and murine cells. Resveratrol did not change KSRP expression, but immunoprecipitation experiments indicated that resveratrol reduces the p38 MAPK-related inhibitory KSRP threonine phosphorylation, without blocking p38 MAPK activation or activity. Mutation of the p38 MAPK target site in KSRP blocked the resveratrol effect on pro-inflammatory gene expression. In addition, resveratrol incubation enhanced KSRP-exosome interaction, which is important for mRNA degradation. Finally, resveratrol incubation enhanced its intra-cellular binding to the IL-8, iNOS and TNF-α mRNA. Therefore, modulation of KSRP mRNA binding activity and, thereby, enhancement of mRNA degradation seems to be the common denominator of many anti-inflammatory effects of resveratrol.
Background: The transcription factor T-bet is pivotal for initiation of Th1-related immunoactivation. Identification of novel genes directly regulated by T-bet is crucial.
Results: Genome-wide analysis and subsequent experiments revealed that T-bet up-regulates IL-36γ/IL-1F9 in myeloid cells.
Conclusion: IL-1-related IL-36γ is a direct T-bet target in myeloid cells.
Significance: Observations suggest that IL-36γ , besides IFNγ, contributes to T-bet functions in immunopathology
By concerted action in dendritic (DC) and T cells, T-box expressed in T cells (T-bet, Tbx21) is pivotal for initiation and perpetuation of Th1 immunity. Identification of novel T-bet-regulated genes is crucial for further understanding the biology of this transcription factor. By combining siRNA technology with genome-wide mRNA expression analysis, we sought to identify new T-bet-regulated genes in predendritic KG1 cells activated by IL-18. One gene robustly dependent on T-bet was IL-36γ, a recently described novel IL-1 family member. Promoter analysis revealed a T-bet binding site that, along with a κB site, enables efficient IL-36γ induction. Using knock-out animals, IL-36γ reliance on T-bet was extended to murine DC. IL-36γ expression by human myeloid cells was confirmed using monocyte-derived DC and M1 macrophages. The latter model was employed to substantiate dependence of IL-36γ on endogenous T-bet in human primary cells. Ectopic expression of T-bet likewise mediated IL-36γ production in HaCaT keratinocytes that otherwise lack this transcription factor. Additional experiments furthermore revealed that mature IL-36γ has the capability to establish an inflammatory gene expression profile in human primary keratinocytes that displays enhanced mRNA levels for TNFα, CCL20, S100A7, inducible NOS, and IL-36γ itself. Data presented herein shed further light on involvement of T-bet in innate immunity and suggest that IL-36γ, besides IFNγ, may contribute to functions of this transcription factor in immunopathology.