Refine
Year of publication
Document Type
- Article (21)
- Preprint (5)
- Contribution to a Periodical (2)
- Conference Proceeding (1)
Has Fulltext
- yes (29)
Is part of the Bibliography
- no (29)
Keywords
Institute
- Physik (28)
- Frankfurt Institute for Advanced Studies (FIAS) (15)
- ELEMENTS (5)
- Präsidium (2)
In the initial stage of relativistic heavy-ion collisions, strong magnetic fields appear due to the large velocity of the colliding charges. The evolution of these fields appears as a novel and intriguing feature in the fluid-dynamical description of heavy-ion collisions. In this work, we study analytically the one-dimensional, longitudinally boost-invariant motion of an ideal fluid in the presence of a transverse magnetic field. Interestingly, we find that, in the limit of ideal magnetohydrodynamics, i.e., for infinite conductivity, and irrespective of the strength of the initial magnetization, the decay of the fluid energy density e with proper time τ is the same as for the time-honoured “Bjorken flow” without magnetic field. Furthermore, when the magnetic field is assumed to decay , where a is an arbitrary number, two classes of analytic solutions can be found depending on whether a is larger or smaller than one. In summary, the analytic solutions presented here highlight that the Bjorken flow is far more general than formerly thought. These solutions can serve both to gain insight on the dynamics of heavy-ion collisions in the presence of strong magnetic fields and as testbeds for numerical codes.
We present entropy-limited hydrodynamics (ELH): a new approach for the computation of numerical fluxes arising in the discretization of hyperbolic equations in conservation form. ELH is based on the hybridisation of an unfiltered high-order scheme with the first-order Lax-Friedrichs method. The activation of the low-order part of the scheme is driven by a measure of the locally generated entropy inspired by the artificial-viscosity method proposed by Guermond et al. (J. Comput. Phys. 230(11):4248-4267, 2011, doi:10.1016/j.jcp.2010.11.043). Here, we present ELH in the context of high-order finite-differencing methods and of the equations of general-relativistic hydrodynamics. We study the performance of ELH in a series of classical astrophysical tests in general relativity involving isolated, rotating and nonrotating neutron stars, and including a case of gravitational collapse to black hole. We present a detailed comparison of ELH with the fifth-order monotonicity preserving method MP5 (Suresh and Huynh in J. Comput. Phys. 136(1):83-99, 1997, doi:10.1006/jcph.1997.5745), one of the most common high-order schemes currently employed in numerical-relativity simulations. We find that ELH achieves comparable and, in many of the cases studied here, better accuracy than more traditional methods at a fraction of the computational cost (up to ∼50% speedup). Given its accuracy and its simplicity of implementation, ELH is a promising framework for the development of new special- and general-relativistic hydrodynamics codes well adapted for massively parallel supercomputers.
We have built quasi-equilibrium models for uniformly rotating quark stars in general relativity. The conformal flatness approximation is employed and the Compact Object CALculator (cocal) code is extended to treat rotating stars with surface density discontinuity. In addition to the widely used MIT bag model, we have considered a strangeon star equation of state (EoS), suggested by Lai and Xu, that is based on quark clustering and results in a stiff EoS. We have investigated the maximum mass of uniformly rotating axisymmetric quark stars. We have also built triaxially deformed solutions for extremely fast rotating quark stars and studied the possible gravitational wave emission from such configurations.
Hypermassive hybrid stars (HMHS) are extreme astrophysical objects that could be produced in the merger of a binary system of compact stars. In contrast to their purely hadronic counterparts, hypermassive neutron stars (HMNS), these highly differentially rotating objects contain deconfined strange quark matter in their slowly rotating inner region. HMHS and HMNS are both mestastable configurations and can survive only shortly after the merger before collapsing to rotating black holes. The appearance of the phase transition from hadronic to quark matter in the interior region of the HMHS and its conjunction with the emitted GW will be addressed in this article by focussing on a specific case study of the delayed phase-transition scenario that takes place during the post-merger evolution of the remnant. The complicated dynamics of the collapse from the HMNS to the more compact HMHS will be analysed in detail. In particular, we will show that the interplay between the spatial density/temperature distributions and the rotational profiles in the interior of the wobbling HMHS after the collapse generates a high-temperature shell within the hadron-quark mixed phase region of the remnant.
In this work, we discuss the dense matter equation of state (EOS) for the extreme range of conditions encountered in neutron stars and their mergers. The calculation of the properties of such an EOS involves modeling different degrees of freedom (such as nuclei, nucleons, hyperons, and quarks), taking into account different symmetries, and including finite density and temperature effects in a thermodynamically consistent manner. We begin by addressing subnuclear matter consisting of nucleons and a small admixture of light nuclei in the context of the excluded volume approach. We then turn our attention to supranuclear homogeneous matter as described by the Chiral Mean Field (CMF) formalism. Finally, we present results from realistic neutron-star-merger simulations performed using the CMF model that predict signatures for deconfinement to quark matter in gravitational wave signals.
We present the black hole accretion code (BHAC), a new multidimensional general-relativistic magnetohydrodynamics module for the MPI-AMRVAC framework. BHAC has been designed to solve the equations of ideal general-relativistic magnetohydrodynamics in arbitrary spacetimes and exploits adaptive mesh refinement techniques with an efficient block-based approach. Several spacetimes have already been implemented and tested. We demonstrate the validity of BHAC by means of various one-, two-, and three-dimensional test problems, as well as through a close comparison with the HARM3D code in the case of a torus accreting onto a black hole. The convergence of a turbulent accretion scenario is investigated with several diagnostics and we find accretion rates and horizon-penetrating fluxes to be convergent to within a few percent when the problem is run in three dimensions. Our analysis also involves the study of the corresponding thermal synchrotron emission, which is performed by means of a new general-relativistic radiative transfer code, BHOSS. The resulting synthetic intensity maps of accretion onto black holes are found to be convergent with increasing resolution and are anticipated to play a crucial role in the interpretation of horizon-scale images resulting from upcoming radio observations of the source at the Galactic Center.
Quasi-universal behavior of the threshold mass in unequal-mass, spinning binary neutron star mergers
(2021)
The lifetime of the remnant produced by the merger of two neutron stars can provide a wealth of information on the equation of state of nuclear matter and on the processes leading to the electromagnetic counterpart. Hence, it is essential to determine when this lifetime is the shortest, corresponding to when the remnant has a mass equal to the threshold mass, Mth, to prompt collapse to a black hole. We report on the results of more than 360 simulations of merging neutron-star binaries covering 40 different configurations differing in mass ratio and spin of the primary. Using this data, we have derived a quasi-universal relation for Mth and expressed its dependence on the mass ratio and spin of the binary. The new expression recovers the results of Koeppel et al. for equal-mass, irrotational binaries and reveals that Mth can increase (decrease) by 5% (10%) for binaries that have spins aligned (antialigned) with the orbital angular momentum and provides evidence for a nonmonotonic dependence of Mth on the mass asymmetry in the system. Finally, we extend to unequal masses and spinning binaries the lower limits that can be set on the stellar radii once a neutron star binary is detected, illustrating how the merger of an unequal-mass, rapidly spinning binary can significantly constrain the allowed values of the stellar radii.
When binary systems of neutron stars merge, a very small fraction of their rest mass is ejected, either dynamically or secularly. This material is neutron-rich and its nucleosynthesis provides the astrophysical site for the production of heavy elements in the Universe, together with a kilonova signal confirming neutron-star mergers as the origin of short gamma-ray bursts. We perform full general-relativistic simulations of binary neutron-star mergers employing three different nuclear-physics equations of state (EOSs), considering both equal- and unequal-mass configurations, and adopting a leakage scheme to account for neutrino radiative losses. Using a combination of techniques, we carry out an extensive and systematic study of the hydrodynamical, thermodynamical, and geometrical properties of the matter ejected dynamically, employing the WinNet nuclear-reaction network to recover the relative abundances of heavy elements produced by each configurations. Among the results obtained, three are particularly important. First, we find that, within the sample considered here, both the properties of the dynamical ejecta and the nucleosynthesis yields are robust against variations of the EOS and masses. Second, using a conservative but robust criterion for unbound matter, we find that the amount of ejected mass is ≲10−3 M⊙, hence at least one order of magnitude smaller than what normally assumed in modelling kilonova signals. Finally, using a simplified and gray-opacity model we assess the observability of the infrared kilonova emission finding, that for all binaries the luminosity peaks around ∼1=2 day in the H-band, reaching a maximum magnitude of −13, and decreasing rapidly after one day.
We investigate the effect of large magnetic fields on the (2 + 1)-dimensional reduced-magnetohydrodynamical expansion of hot and dense nuclear matter produced in √sNN = 200 GeV Au+Au collisions. For the sake of simplicity,we consider the casewhere themagnetic field points in the direction perpendicular to the reaction plane. We also consider this field to be external, with energy density parametrized as a two-dimensional Gaussian. The width of the Gaussian along the directions orthogonal to the beam axis varies with the centrality of the collision. The dependence of the magnetic field on proper time (τ ) for the case of zero electrical conductivity of the QGP is parametrized following Deng et al. [Phys. Rev. C 85, 044907 (2012)], and for finite electrical conductivity following Tuchin [Phys. Rev. C 88, 024911 (2013)].We solve the equations of motion of ideal hydrodynamics for such an external magnetic field. For collisions with nonzero impact parameter we observe considerable changes in the evolution of the momentum eccentricities of the fireball when comparing the case when the magnetic field decays in a conducting QGP medium and when no magnetic field is present. The elliptic-flow coefficient v2 of π− is shown to increase in the presence of an external magnetic field and the increment in v2 is found to depend on the evolution and the initial magnitude of the magnetic field.
Determining the phase structure of Quantum Chromodynamics (QCD) and its Equation of State (EOS) at densities and temperatures realized inside neutron stars and their mergers is a long-standing open problem. The holographic V-QCD framework provides a model for the EOS of dense and hot QCD, which describes the deconfinement phase transition between a dense baryonic and a quark matter phase. We use this model in fully general relativistic hydrodynamic (GRHD) simulations to study the formation of quark matter and the emitted gravitational wave signal of binary systems that are similar to the first ever observed neutron star merger event GW170817.