Refine
Document Type
- Article (33)
Has Fulltext
- yes (33)
Is part of the Bibliography
- no (33)
Keywords
- prostate cancer (9)
- radical prostatectomy (6)
- Adenocarcinoma (3)
- HoLEP (3)
- Squamous cell carcinoma (3)
- Variant histology (3)
- survival (3)
- systematic biopsy (3)
- BPH (2)
- CSM (2)
Institute
- Medizin (33)
Objective: Many patients with localized prostate cancer (PCa) do not immediately undergo radical prostatectomy (RP) after biopsy confirmation. The aim of this study was to investigate the influence of “time-from-biopsy-to- prostatectomy” on adverse pathological outcomes.
Materials and Methods: Between January 2014 and December 2019, 437 patients with intermediate- and high risk PCa who underwent RP were retrospectively identified within our prospective institutional database. For the aim of our study, we focused on patients with intermediate- (n = 285) and high-risk (n = 151) PCa using D'Amico risk stratification. Endpoints were adverse pathological outcomes and proportion of nerve-sparing procedures after RP stratified by “time-from-biopsy-to-prostatectomy”: ≤3 months vs. >3 and < 6 months. Medians and interquartile ranges (IQR) were reported for continuously coded variables. The chi-square test examined the statistical significance of the differences in proportions while the Kruskal-Wallis test was used to examine differences in medians. Multivariable (ordered) logistic regressions, analyzing the impact of time between diagnosis and prostatectomy, were separately run for all relevant outcome variables (ISUP specimen, margin status, pathological stage, pathological nodal status, LVI, perineural invasion, nerve-sparing).
Results: We observed no difference between patients undergoing RP ≤3 months vs. >3 and <6 months after diagnosis for the following oncological endpoints: pT-stage, ISUP grading, probability of a positive surgical margin, probability of lymph node invasion (LNI), lymphovascular invasion (LVI), and perineural invasion (pn) in patients with intermediate- and high-risk PCa. Likewise, the rates of nerve sparing procedures were 84.3 vs. 87.4% (p = 0.778) and 61.0% vs. 78.8% (p = 0.211), for intermediate- and high-risk PCa patients undergoing surgery after ≤3 months vs. >3 and <6 months, respectively. In multivariable adjusted analyses, a time to surgery >3 months did not significantly worsen any of the outcome variables in patients with intermediate- or high-risk PCa (all p > 0.05).
Conclusion: A “time-from-biopsy-to-prostatectomy” of >3 and <6 months is neither associated with adverse pathological outcomes nor poorer chances of nerve sparing RP in intermediate- and high-risk PCa patients.
Introduction: MRI-targeted biopsy (TB) increases overall prostate-cancer (PCa) detection-rates and decreases the risk of insignificant PCa detection. However, the impact of these findings on the definite pathology after radical prostatectomy (RP) is under debate.
Materials and Methods: Between 01/2014 and 12/2018, 366 patients undergoing prostate biopsy and RP were retrospectively analyzed. The correlation between biopsy Gleason-score (highest Gleason-score in a core) and the RP Gleason-score in patients undergoing systematic biopsy (SB-group) (n = 221) or TB+SB (TB-group, n = 145) was tested using the ISUP Gleason-group grading (GGG, scale 1–5). Sub analyses focused on biopsy GGG 1 and GGG ≥ 2.
Results: Proportions of biopsy GGG 1–5 in the SB-group and TB-group were 24.4, 37.6, 19, 10.9, 8.1% and 13.8, 43.4, 24.2, 13.8, 4.8%, respectively (p = 0.07). Biopsy and pathologic GGG were concordant in 108 of 221 (48.9%) in SB- and 74 of 145 (51.1%) in TB-group (p = 0.8). Gleason upgrading was recorded in 33.5 and 31.7% in SB- vs. TB-group (p = 0.8). Patients with biopsy GGG 1 undergoing RP showed an upgrading in 68.5%(37/54) in SB- and 75%(15/20) in TB-group (p = 0.8). In patients with biopsy GGG ≥ 2 concordance increased for both biopsy approaches (54.5 vs. 55.2% for SB- vs. TB-group, p = 0.9).
Discussion: Irrespective of differences in PCa detection-rates between TB- and SB-groups, no significant differences in GGG concordance and upgrading between patients of both groups undergoing biopsy, followed by RP, were recorded. Concordance rates increased in men with biopsy GGG ≥ 2. TB seems to detect more patients with PCa without a difference in concordance with final pathology.
Purpose: To compare Cancer-specific mortality (CSM) in patients with Squamous cell carcinoma (SCC) vs. non-SCC penile cancer, since survival outcomes may differ between histological subtypes. Methods: Within the Surveillance, Epidemiology and End Results database (2004–2016), penile cancer patients of all stages were identified. Temporal trend analyses, cumulative incidence and Kaplan–Meier plots, multivariable Cox regression and Fine and Gray competing-risks regression analyses tested for CSM differences between non-SCC vs. SCC penile cancer patients. Results: Of 4,120 eligible penile cancer patients, 123 (3%) harbored non-SCC vs. 4,027 (97%) SCC. Of all non-SCC patients, 51 (41%) harbored melanomas, 42 (34%) basal cell carcinomas, 10 (8%) adenocarcinomas, eight (6.5%) skin appendage malignancies, six (5%) epithelial cell neoplasms, two (1.5%) neuroendocrine tumors, two (1.5%) lymphomas, two (1.5%) sarcomas. Stage at presentation differed between non-SCC vs. SCC. In temporal trend analyses, non-SCC diagnoses neither decreased nor increased over time (p > 0.05). After stratification according to localized, locally advanced, and metastatic stage, no CSM differences were observed between non-SCC vs. SCC, with 5-year survival rates of 11 vs 11% (p = 0.9) for localized, 33 vs. 37% (p = 0.4) for locally advanced, and 1-year survival rates of 37 vs. 53% (p = 0.9) for metastatic penile cancer, respectively. After propensity score matching for patient and tumor characteristics and additional multivariable adjustment, no CSM differences between non-SCC vs. SCC were observed. Conclusion: Non-SCC penile cancer is rare. Although exceptions exist, on average, non-SCC penile cancer has comparable CSM as SCC penile cancer patients, after stratification for localized, locally invasive, and metastatic disease.
Background: To test the effect of variant histology relative to urothelial histology on stage at presentation, cancer specific mortality (CSM) and overall mortality (OM) after chemotherapy use, in urethral cancer.
Materials and Methods: Within the Surveillance, Epidemiology and End Results (2004–2016) database, we identified 1,907 primary variant histology urethral cancer patients. Kaplan-Meier plots, Cox regression analyses, cumulative incidence-plots, multivariable competing-risks regression models and propensity score matching for patient and tumor characteristics were used.
Results:Of 1,907 eligible urethral cancer patients, urothelial histology affected 1,009 (52.9%) vs. squamous cell carcinoma (SCC) 455 (23.6%) vs. adenocarcinoma 278 (14.6%) vs. other histology 165 (8.7%) patients. Urothelial histological patients exhibited lower stages at presentation than SCC, adenocarcinoma or other histology patients. In urothelial histology patients, five-year CSM was 23.5% vs. 34.4% in SCC (Hazard Ratio (HR) 1.57) vs. 40.7% in adenocarcinoma (HR 1.69) vs. 43.4% in other histology (HR 1.99, p<0.001). After matching in multivariate competing-risks regression models, variant histology exhibited 1.35-fold higher CSM than urothelial. Finally, in metastatic urethral cancer, lower OM was recorded after chemotherapy in general, including metastatic adenocarcinoma and other variant histology subtypes, except metastatic SCC.
Conclusion: Adenocarcinoma, SCC and other histology subtypes affect fewer patients than urothelial histology. Presence of variant histology results in higher CSM. Finally, chemotherapy for metastatic urethral cancer improves survival in adenocarcinoma and other variant histology subtypes, but not in SCC.
Introduction and Objective: Identifying patients that benefit from cisplatin-based adjuvant chemotherapy is a major issue in the management of muscle-invasive bladder cancer (MIBC). The purpose of this study is to correlate “luminal” and “basal” type protein expression with histological subtypes, to investigate the prognostic impact on survival after adjuvant chemotherapy and to define molecular consensus subtypes of “double negative” patients (i.e., without expression of CK5/6 or GATA3).
Materials and Methods: We performed immunohistochemical (IHC) analysis of CK5/6 and GATA3 for surrogate molecular subtyping in 181 MIBC samples. The mRNA expression profiles for molecular consensus classification were determined in CK5/6 and GATA3 (double) negative cases using a transcriptome panel with 19.398 mRNA targets (HTG Molecular Diagnostics). Data of 110 patients undergoing radical cystectomy were available for survival analysis.
Results: The expression of CK5/6 correlated with squamous histological subtype (96%) and expression of GATA3 was associated with micropapillary histology (100%). In the multivariate Cox-regression model, patients receiving adjuvant chemotherapy had a significant survival benefit (hazard ratio [HR]: 0.19 95% confidence interval [CI]: 0.1–0.4, p < 0.001) and double-negative cases had decreased OS (HR: 4.07; 95% CI: 1.5–10.9, p = 0.005). Double negative cases were classified as NE-like (30%), stroma-rich (30%), and Ba/Sq (40%) consensus molecular subtypes and displaying different histological subtypes.
Background: Since January 2018 performance of urethroplasties is done on regular basis at the University Hospital Frankfurt (UKF). We aimed to implement and transfer an institutional standardized perioperative algorithm for urethral surgery (established at the University Hospital Hamburg-Eppendorf—UKE) using a validated Urethral Stricture Surgery Patient-Reported Outcome Measure (USS-PROM) in patients undergoing urethroplasty at UKF. Materials and Methods: We retrospectively analyzed all patients who underwent urethroplasty for urethral stricture disease between January 2018 and January 2020 at UKF. All patients were offered to revisit for clinical follow-up (FU) and completion of USS-PROM. Primary end point was stricture recurrence-free survival (RFS). Secondary endpoints were functional outcomes, quality of life (QoL), and patient satisfaction. Results: In total, 50 patients underwent urethroplasty and 74 and 24% had a history of previous urethrotomy or urethroplasty, respectively. A buccal mucosal graft urethroplasty was performed in 86% (n = 43). After patient's exclusion due to lost of FU, FU <3 months, and/or a pending second stage procedure, 40 patients were eligible for final analysis. At median FU of 10 months (interquartile-range 5.0–18.0), RFS was 83%. After successful voiding trial, the postoperative median Qmax significantly improved (24.0 vs. 7.0 mL/s; p < 0.01). Conversely, median residual urine decreased significantly (78 vs. 10 mL; p < 0.01). Overall, 95% of patients stated that QoL improved and 90% were satisfied by the surgical outcome. Conclusions: We demonstrated a successful implementation and transfer of an institutional standardized perioperative algorithm for urethral surgery from one location (UKE) to another (UKF). In our short-term FU, urethroplasty showed excellent RFS, low complication rates, good functional results, improvement of QoL and high patient satisfaction. PROMs allow an objective comparison between different centers.
Objectives: Bladder neck contracture (BNC) is a bothersome complication following endoscopic treatment for benign prostatic hyperplasia (BPH). The objective of our study was to give a more realistic insight into contemporary endoscopic BNC treatment and to evaluate and identify risk factors associated with inferior outcome. Material and Methods: We identified patients who underwent transurethral treatment for BNC secondary to previous endoscopic therapy for BPH between March 2009 and October 2016. Patients with vesico-urethral anastomotic stenosis after radical prostatectomy were excluded. Digital charts were reviewed for re-admissions and re-visits at our institutions and patients were contacted personally for follow-up. Our non-validated questionnaire assessed previous urologic therapies (including radiotherapy, endoscopic, and open surgery), time to eventual further therapy in case of BNC recurrence, and the modality of recurrence management. Results: Of 60 patients, 49 (82%) and 11 (18%) underwent transurethral bladder neck resection and incision, respectively. Initial BPH therapy was transurethral resection of the prostate (TURP) in 54 (90%) and holmium laser enucleation of the prostate (HoLEP) in six (10%) patients. Median time from prior therapy was 8.5 (IQR 5.3–14) months and differed significantly in those with (6.5 months; IQR 4–10) and those without BNC recurrence (10 months; IQR 6–20; p = 0.046). Thirty-three patients (55%) underwent initial endoscopic treatment, and 27 (45%) repeated endoscopic treatment for BNC. In initially-treated patients, time since BPH surgery differed significantly between those with a recurrence (median 7.5 months; IQR 6–9) compared to those treated successfully (median 12 months; IQR 9–25; p = 0.01). In patients with repeated treatment, median time from prior BNC therapy did not differ between those with (4.5 months; IQR 2–12) and those without a recurrence (6 months; IQR 6–10; p = 0.6). Overall, BNC treatment was successful in 32 patients (53%). The observed success rate of BNC treatment was significantly higher after HoLEP compared to TURP (100% vs. 48%; p = 0.026). Type of BNC treatment, number of BNC treatment, and age at surgery did not influence the outcome. Conclusions: A longer time interval between previous BPH therapy and subsequent BNC incidence seems to favorably affect treatment success of endoscopic BNC treatment, and transurethral resection and incision appear equally effective. Granted the relatively small sample size, BNC treatment success seems to be higher after HoLEP compared to TURP, which warrants validation in larger cohorts.
Background: To evaluate the impact of time to castration resistance (TTCR) in metastatic hormone-sensitive prostate cancer (mHSPC) patients on overall survival (OS) in the era of combination therapies for mHSPC.
Material and Methods: Of 213 mHSPC patients diagnosed between 01/2013-12/2020 who subsequently developed metastatic castration resistant prostate cancer (mCRPC), 204 eligible patients were analyzed after having applied exclusion criteria. mHSPC patients were classified into TTCR <12, 12-18, 18-24, and >24 months and analyzed regarding OS. Moreover, further OS analyses were performed after having developed mCRPC status according to TTCR. Logistic regression models predicted the value of TTCR on OS.
Results: Median follow-up was 34 months. Among 204 mHSPC patients, 41.2% harbored TTCR <12 months, 18.1% for 12-18 months, 15.2% for 18-24 months, and 25.5% for >24 months. Median age was 67 years and median PSA at prostate cancer diagnosis was 61 ng/ml. No differences in patient characteristics were observed (all p>0.05). According to OS, TTCR <12 months patients had the worst OS, followed by TTCR 12-18 months, 18-24 months, and >24 months, in that order (p<0.001). After multivariable adjustment, a 4.07-, 3.31-, and 6.40-fold higher mortality was observed for TTCR 18-24 months, 12-18 months, and <12 months patients, relative to TTCR >24 months (all p<0.05). Conversely, OS after development of mCRPC was not influenced by TTCR stratification (all p>0.05).
Conclusion: Patients with TTCR <12 months are at the highest OS disadvantage in mHSPC. This OS disadvantage persisted even after multivariable adjustment. Interestingly, TTCR stratified analyses did not influence OS in mCRPC patients.
Background: To analyze postoperative, in-hospital, complication rates in patients with organ transplantation before radical prostatectomy (RP). Methods: From National Inpatient Sample (NIS) database (2000–2015) prostate cancer patients treated with RP were abstracted and stratified according to prior organ transplant versus nontransplant. Multivariable logistic regression models predicted in-hospital complications. Results: Of all eligible 202,419 RP patients, 216 (0.1%) underwent RP after prior organ transplantation. Transplant RP patients exhibited higher proportions of Charlson comorbidity index ≥2 (13.0% vs. 3.0%), obesity (9.3% vs. 5.6%, both p < 0.05), versus to nontransplant RP. Of transplant RP patients, 96 underwent kidney (44.4%), 44 heart (20.4%), 40 liver (18.5%), 30 (13.9%) bone marrow, <11 lung (<5%), and <11 pancreatic (<5%) transplantation before RP. Within transplant RP patients, rates of lymph node dissection ranged from 37.5% (kidney transplant) to 60.0% (bone marrow transplant, p < 0.01) versus 51% in nontransplant patients. Regarding in-hospital complications, transplant patients more frequently exhibited, diabetic (31.5% vs. 11.6%, p < 0.001), major (7.9% vs. 2.9%) cardiac complications (3.2% vs. 1.2%, p = 0.01), and acute kidney failure (5.1% vs. 0.9%, p < 0.001), versus nontransplant RP. In multivariable logistic regression models, transplant RP patients were at higher risk of acute kidney failure (odds ratio [OR]: 4.83), diabetic (OR: 2.81), major (OR: 2.39), intraoperative (OR: 2.38), cardiac (OR: 2.16), transfusion (OR: 1.37), and overall complications (1.36, all p < 0.001). No in-hospital mortalities were recorded in transplant patients after RP. Conclusions: Of all transplants before RP, kidney ranks first. RP patients with prior transplantation have an increased risk of in-hospital complications. The highest risk, relative to nontransplant RP patients appears to acute kidney failure.
Background: Number of positive prostate biopsy cores represents a key determinant between high versus very high-risk prostate cancer (PCa). We performed a critical appraisal of the association between the number of positive prostate biopsy cores and CSM in high versus very high-risk PCa. Methods: Within Surveillance, Epidemiology, and End Results database (2010–2016), 13,836 high versus 20,359 very high-risk PCa patients were identified. Discrimination according to 11 different positive prostate biopsy core cut-offs (≥2–≥12) were tested in Kaplan–Meier, cumulative incidence, and multivariable Cox and competing risks regression models. Results: Among 11 tested positive prostate biopsy core cut-offs, more than or equal to 8 (high-risk vs. very high-risk: n = 18,986 vs. n = 15,209, median prostate-specific antigen [PSA]: 10.6 vs. 16.8 ng/ml, <.001) yielded optimal discrimination and was closely followed by the established more than or equal to 5 cut-off (high-risk vs. very high-risk: n = 13,836 vs. n = 20,359, median PSA: 16.5 vs. 11.1 ng/ml, p < .001). Stratification according to more than or equal to 8 positive prostate biopsy cores resulted in CSM rates of 4.1 versus 14.2% (delta: 10.1%, multivariable hazard ratio: 2.2, p < .001) and stratification according to more than or equal to 5 positive prostate biopsy cores with CSM rates of 3.7 versus 11.9% (delta: 8.2%, multivariable hazard ratio: 2.0, p < .001) in respectively high versus very high-risk PCa. Conclusions: The more than or equal to 8 positive prostate biopsy cores cutoff yielded optimal results. It was very closely followed by more than or equal to 5 positive prostate biopsy cores. In consequence, virtually the same endorsement may be made for either cutoff. However, more than or equal to 5 positive prostate biopsy cores cutoff, based on its existing wide implementation, might represent the optimal choice.