Refine
Document Type
- Article (5)
- Doctoral Thesis (1)
Has Fulltext
- yes (6)
Is part of the Bibliography
- no (6)
Keywords
- crystal structure (2)
- solvate (2)
- Bärnighausen tree (1)
- Festkörperstruktur (1)
- NMR crystallography (1)
- PXRD (1)
- Pulverdiffraktometrie (1)
- Röntgenstrukturanalyse (1)
- X-ray diffraction (1)
- crystal structure determination (1)
Institute
The crystal structures of sodium ethoxide (sodium ethanolate, NaOEt), sodium n-propoxide (sodium n-propanolate, NaOnPr), sodium n-butoxide (sodium n-butanolate, NaOnBu) and sodium n-pentoxide (sodium n-amylate, NaOnAm) were determined from powder X-ray diffraction data. NaOEt crystallizes in space group P421m, with Z = 2, and the other alkoxides crystallize in P4/nmm, with Z = 2. To resolve space-group ambiguities, a Bärnighausen tree was set up, and Rietveld refinements were performed with different models. In all structures, the Na and O atoms form a quadratic net, with the alkyl groups pointing outwards on both sides (anti-PbO type). The alkyl groups are disordered. The disorder becomes even more pronounced with increasing chain length. Recrystallization from the corresponding alcohols yielded four sodium alkoxide solvates: sodium ethoxide ethanol disolvate (NaOEt·2EtOH), sodium n-propoxide n-propanol disolvate (NaOnPr·2nPrOH), sodium isopropoxide isopropanol pentasolvate (NaOiPr·5iPrOH) and sodium tert-amylate tert-amyl alcohol monosolvate (NaOtAm·tAmOH, tAm = 2-methyl-2-butyl). Their crystal structures were determined by single-crystal X-ray diffraction. All these solvates form chain structures consisting of Na+, –O− and –OH groups, encased by alkyl groups. The hydrogen-bond networks diverge widely among the solvate structures. The hydrogen-bond topology of the iPrOH network in NaOiPr·5iPrOH shows branched hydrogen bonds and differs considerably from the networks in pure crystalline iPrOH.
First crystal structure of a Pigment Red 52 compound: DMSO solvate hydrate of the monosodium salt
(2021)
Pigment Red 52, Na2[C18H11ClN2O6S], is an industrially produced hydrazone-laked pigment. It serves as an intermediate in the synthesis of the corresponding Ca2+ and Mn2+ salts, which are used commercially for printing inks and lacquers. Hitherto, no crystal structure of any salt of Pigment Red 52 is known. Now, single crystals have been obtained of a dimethyl sulfoxide solvate hydrate of the monosodium salt of Pigment Red 52, namely, monosodium 2-[2-(3-carboxy-2-oxo-1,2-dihydronaphthalen-1-ylidene)hydrazin-1-yl]-5-chloro-4-methylbenzenesulfonate dimethyl sulfoxide monosolvate monohydrate, Na+·C18H12ClN2O6S−·H2O·C2H6OS, obtained from in-house synthesized Pigment Red 52. The crystal structure was determined by single-crystal X-ray diffraction at 173 K. In this monosodium salt, the SO3− group is deprotonated, whereas the COOH group is protonated. The residues form chains via ionic interactions and hydrogen bonds. The chains are arranged in polar/non-polar double layers.
The excellent results of dispersion‐corrected density functional theory (DFT‐D) calculations for static systems have been well established over the past decade. The introduction of dynamics into DFT‐D calculations is a target, especially for the field of molecular NMR crystallography. Four 13C ss‐NMR calibration compounds are investigated by single‐crystal X‐ray diffraction, molecular dynamics and DFT‐D calculations. The crystal structure of 3‐methylglutaric acid is reported. The rotator phases of adamantane and hexamethylbenzene at room temperature are successfully reproduced in the molecular dynamics simulations. The calculated 13C chemical shifts of these compounds are in excellent agreement with experiment, with a root‐mean‐square deviation of 2.0 ppm. It is confirmed that a combination of classical molecular dynamics and DFT‐D chemical shift calculation improves the accuracy of calculated chemical shifts.
The title compound, C4H9N5O2+·SO42−·H2O, is the monohydrate of the commercially available compound `C4H7N5O·H2SO4·xH2O'. It is obtained by reprecipitation of C4H7N5O·H2SO4·xH2O from dilute sodium hydroxide solution with dilute sulfuric acid. The crystal structure of anhydrous 2,4,5-triamino-1,6-dihydropyrimidin-6-one sulfate is known, although called by the authors 5-amminium-6-amino-isocytosinium sulfate [Bieri et al. (1993[Bieri, J. H., Prewo, R. & Linden, A. (1993). Private communication (refcode HACDEU). CCDC, Cambridge, England]). Private communication (refcode HACDEU). CCDC, Cambridge, England]. In the structure, the sulfate group is deprotonated, whereas one of the amino groups is protonated (R2C—NH3+) and one is rearranged to a protonated imine group (R2C=NH2+). This arrangement is very similar to the known crystal structure of the anhydrate. Several tautomeric forms of the investigated molecule are possible, which leads to questionable proton attributions. The measured data allowed the location of all hydrogen atoms from the residual electron density. In the crystal, ions and water molecules are linked into a three-dimensional network by N—H⋯O and O—H⋯O hydrogen bonds.
Im Rahmen dieser kumulativen Dissertation konnte eine Methode mitentwickelt werden, die die Bestimmung der absoluten Konfiguration pharmazeutischer Verbindungen aus Röntgenpulverbeugungsdaten ermöglicht. Die Methode basiert auf der Bildung von Salzen. Die notwendige Herstellung dieser Salze mit Salzbildnern bekannter Konfiguration wurde hinsichtlich einer minimalen Ansatzgröße optimiert und erlaubt ein Arbeiten mit Mengen von unter zehn Mikrogramm. Die Kristallisation konnte sogar direkt in den Kapillaren für die Aufnahme der Pulverdiagramme durchgeführt werden. Die absolute Konfiguration einiger als Testfälle gewählter pharmazeutischer Wirkstoffe konnte auf diese Art erfolgreich bestimmt werden. Dies stellt eine erfolgreiche Erweiterung bisher verfügbarer Methoden dar.
1,1,3,3-Tetraethyl-5-nitroisoindolin (TENI) und 1,1,3,3-Tetraethyl-5-nitroisoindolin-2-oxyl (TENO) sind Zwischenstufen in der Synthese von RNS-Spinlabeln für die EPR-Spektroskopie. Die Kristallstrukturen beider Verbindungen konnten aus Einkristallbeugungsdaten bestimmt werden. TENI hat einen Schmelzpunkt nahe der Raumtemperatur. TENO hat dagegen einen wesentlich höheren Schmelzpunkt, obwohl das Molekül nur ein Sauerstoffatom zusätzlich hat. Die Kristallstruktur liefert die Erklärung für dieses Phänomen: In der Kristallstruktur von TENI findet sich als stärkste intermolekulare Wechselwirkung eine einzelne schwache, sehr lange Wasserstoffbrückenbindung.
6-Amino-2-iminiumyl-4-oxo-1,2,3,4-tetrahydropyrimidin-5-aminiumsulfat, ein Edukt der Synthese von Leukopterin konnte als Hydrat erhalten werden. Die Kristallstruktur dieses Monohydrats konnte problemlos bestimmt werden, ebenso wie die von synthetisiertem 4-Amino-2,6-dimethylpyrimidin.
Natriumethanolat wurde nach einer 180 Jahre alten Vorschrift von Liebig synthetisiert. Wie die Röntgenpulverdiagramme zeigen, bilden sich dabei jedoch Gemische von verschiedenen Phasen. Die Kristallstruktur von reinem NaOEt konnte aus Pulverdaten bestimmt werden. Ebenfalls wurden ein Diethanolsolvat sowie zwei weitere Phasen identifiziert. Vom Diethanolsolvat NaOEt · 2 HOEt konnten Einkristalle hergestellt und die Kristallstruktur aus diesen bestimmt werden. Die Kristallstrukturen von Natrium-n-propanolat (NaOnPr), Natrium-n-butanolat (NaOnBu) und Natrium-n-amylat (NaOnAm) konnten ebenfalls aus Pulverdaten aufgeklärt werden. Sie weisen ein ähnliches Na-O-Gitter wie Natriumethanolat auf, allerdings kristallisieren sie in der Raumgruppe P 4/n m m. Die abweichende Raumgruppe des NaOEt (P -4 21 m) liegt am sterischen Anspruch der Ethylgruppe. Die längeren Alkylgruppen sind hochgradig fehlgeordnet und somit im Mittel zylinderförmig. Die Ethylgruppe dagegen hat einen weniger symmetrischen Raumbedarf. Die Solvate der Alkalialkoholate wurden mit zunehmender Länge der Alkylketten instabiler. Nichtsdestotrotz konnten drei verschiedene Solvate hergestellt werden: NaOnPr · 2 HOnPr, NaOiPr · 5 HOiPr und NaOtAm · HOtAm. Ihre Kristallstrukturen konnten aus Einkristallbeugungsdaten bestimmt werden. In diesen Strukturen zeigen sich sehr unterschiedliche Strukturmotive, die teilweise die mögliche Existenz weiterer Solvatstufen andeuten.
Die industriellen Rotpigmente Pigment Red 52 und Pigment Red 48 wurden im Labor unter verschiedenen Bedingungen synthetisiert. Dabei wurden neben den kommerziell verfügbaren Phasen einige neue Phasen identifiziert. Erstmals konnten Kristallstrukturen von P.R.52 und P.R.48 bestimmt werden. Von Pigment Red 52 konnte ein bisher unbekanntes Mononatriumsalz hergestellt werden. Von diesem Salz konnte ein DMSO-Solvat-Monohydrat kristallisiert werden. Aus erhaltenen Einkristallen konnte die Struktur bestimmt werden. Von Pigment Red 48 konnte ebenfalls ein bisher nicht literaturbekanntes Mononatriumsalz isoliert werden. Von zwei Hydratstufen dieser Verbindung konnten Einkristalle hergestellt und ihre Kristallstrukturen bestimmt werden. Eine weitere Phase wurde als Anhydrat identifiziert. Vom Di-Natriumsalz des P.R.52 sowie von seinem Calciumsalz wurden insgesamt fünf verschiedene Hydratstufen gefunden. Die Kristallstrukturen dieser Hydrate konnten aus Röntgenpulverbeugungsdaten bestimmt werden. Von einer Hydratstufe konnte ebenfalls ein Einkristall erhalten und die Struktur bestätigt werden. Eine Veröffentlichung ist in Vorbereitung.
Die Isomere des Orangepigments Perinon werden nach gemeinsamer Synthese industriell durch Überführung in „Trennsalze“ getrennt. Weder die Molekülkonstitution der Trennsalz-Ionen, noch die chemische Zusammensetzung der Feststoffe, noch deren Kristallstrukturen waren bisher bekannt. Die industrielle Form des „trans-Trennsalzes“ konnte im Labor hergestellt werden. Eine weitere Phase des trans-Perinontrennsalzes konnte hergestellt und identifiziert werden. Durch die nachfolgende Einkristallstrukturanalyse zeigte sich, dass die Trennsalze eine völlig andere Molekülkonstitution haben, als in der Literatur beschrieben war: Statt eines planaren Perinongerüsts enthält das Trennsalz ein verdrehtes Bis(benzimidazolat)naphthalindicarboxylat-tetraanion, dessen Ladung durch Kalium-Kationen kompensiert wird. Das bisher nie als Feststoff beschriebene cis-Perinontrennsalz wurde hergestellt und kristallisiert. Es konnten Einkristalle hergestellt und die Kristallstruktur aus diesen bestimmt werden. Alle Perinontrennsalze enthalten im Kristallgitter eine beträchtliche Anzahl Wasser- und Ethanolmoleküle. Durch Festkörper-NMR-Spektroskopie konnte gezeigt werden, dass das Wasser-Ethanol-Netzwerk stark dynamisch ist. Bei der Hydrolyse der Trennsalze entstehen wieder die ursprünglichen, wasser- und lösungsmittelfreien Perinonpigmente.