Refine
Language
- English (37)
Has Fulltext
- yes (37)
Is part of the Bibliography
- no (37)
Keywords
- Diffraction (2)
- Cold nuclear matter effects (1)
- Collectivity (1)
- Correlation (1)
- Elastic scattering (1)
- Forward physics (1)
- Groomed jet radius (1)
- Hadron-Hadron scattering (experiments) (1)
- J/ψ suppression (1)
- Jet substructure (1)
Institute
We report cumulants of the proton multiplicity distribution from dedicated fixed-target Au+Au collisions at 3.0 GeV, measured by the STAR experiment in the kinematic acceptance of rapidity (y) and transverse momentum (pT) within −0.5<y<0 and 0.4<pT<2.0 GeV/c. In the most central 0--5\% collisions, a proton cumulant ratio is measured to be C4/C2=−0.85±0.09 (stat.)±0.82 (syst.), which is less than unity, the Poisson baseline. The hadronic transport UrQMD model reproduces our C4/C2 in the measured acceptance. Compared to higher energy results and the transport model calculations, the suppression in C4/C2 is consistent with fluctuations driven by baryon number conservation and indicates an energy regime dominated by hadronic interactions. These data imply that the QCD critical region, if created in heavy-ion collisions, could only exist at energies higher than 3\,GeV.
We report cumulants of the proton multiplicity distribution from dedicated fixed-target Au+Au collisions at 3.0 GeV, measured by the STAR experiment in the kinematic acceptance of rapidity (y) and transverse momentum (pT) within −0.5<y<0 and 0.4<pT<2.0 GeV/c. In the most central 0--5\% collisions, a proton cumulant ratio is measured to be C4/C2=−0.85±0.09 (stat.)±0.82 (syst.), which is less than unity, the Poisson baseline. The hadronic transport UrQMD model reproduces our C4/C2 in the measured acceptance. Compared to higher energy results and the transport model calculations, the suppression in C4/C2 is consistent with fluctuations driven by baryon number conservation and indicates an energy regime dominated by hadronic interactions. These data imply that the QCD critical region, if created in heavy-ion collisions, could only exist at energies higher than 3\,GeV.
We report cumulants of the proton multiplicity distribution from dedicated fixed-target Au+Au collisions at sNN−−−√ = 3.0 GeV, measured by the STAR experiment in the kinematic acceptance of rapidity (y) and transverse momentum (pT) within −0.5<y<0 and 0.4<pT<2.0 GeV/c. In the most central 0--5\% collisions, a proton cumulant ratio is measured to be C4/C2=−0.85±0.09 (stat.)±0.82 (syst.), which is less than unity, the Poisson baseline. The hadronic transport UrQMD model reproduces our C4/C2 in the measured acceptance. Compared to higher energy results and the transport model calculations, the suppression in C4/C2 is consistent with fluctuations driven by baryon number conservation and indicates an energy regime dominated by hadronic interactions. These data imply that the QCD critical region, if created in heavy-ion collisions, could only exist at energies higher than 3\,GeV.
We report a new measurement of the production cross section for inclusive electrons from open heavy-flavor hadron decays as a function of transverse momentum (pT) at mid-rapidity (|y|< 0.7) in p+p collisions at s√=200 GeV. The result is presented for 2.5 <pT< 10 GeV/c with an improved precision at high pT with respect to the previous measurements, and thus provides a better constraint on perturbative QCD calculations. Moreover, this measurement also provides a high-precision reference for measurements of nuclear modification factors for inclusive electrons from open-charm and -bottom hadron decays in heavy-ion collisions.
We report a new measurement of the production cross section for inclusive electrons from open heavy-flavor hadron decays as a function of transverse momentum (pT) at mid-rapidity (|y|< 0.7) in p+p collisions at s√=200 GeV. The result is presented for 2.5 <pT< 10 GeV/c with an improved precision above 6 GeV/c with respect to the previous measurements, providing more constraints on perturbative QCD calculations. Moreover, this measurement also provides a high-precision reference for measurements of nuclear modification factors for inclusive electrons from open-charm and -bottom hadron decays in heavy-ion collisions.
We report the first multi-differential measurements of strange hadrons of K−, ϕ and Ξ− yields as well as the ratios of ϕ/K− and ϕ/Ξ− in Au+Au collisions at sNN−−−√=3GeV with the STAR experiment fixed target configuration at RHIC. The ϕ mesons and Ξ− hyperons are measured through hadronic decay channels, ϕ→K+K− and Ξ−→Λπ−. Collision centrality and rapidity dependence of the transverse spectra for these strange hadrons are presented. The 4π yields and ratios are compared to thermal model and hadronic transport model predictions. At the collision energy, thermal model with grand canonical ensemble (GCE) under-predicts the ϕ/K− ratio while the result of canonical ensemble (CE) calculations reproduce well the ratios of ϕ/K−, with the correlation length rc∼2.7\,fm, and ϕ/Ξ−, rc∼4.2\,fm, for the 0-10\% central collisions. Hadronic transport models including high mass resonance decays could also describe the ratios. While thermal calculations with GCE work well for strangeness production in high energy collisions, the change to CE at 3GeV implies a rather different medium property at high baryon density.
We report the first multi-differential measurements of strange hadrons of K−, ϕ and Ξ− yields as well as the ratios of ϕ/K− and ϕ/Ξ− in Au+Au collisions at sNN−−−√=3GeV with the STAR experiment fixed target configuration at RHIC. The ϕ mesons and Ξ− hyperons are measured through hadronic decay channels, ϕ→K+K− and Ξ−→Λπ−. Collision centrality and rapidity dependence of the transverse momentum spectra for these strange hadrons are presented. The 4π yields and ratios are compared to thermal model and hadronic transport model predictions. At this collision energy, thermal model with grand canonical ensemble (GCE) under-predicts the ϕ/K− ratio while the result of canonical ensemble (CE) calculations reproduce well the ratios of ϕ/K−, with the correlation length rc∼2.7\,fm, and ϕ/Ξ−, rc∼4.2\,fm, for the 0-10\% central collisions. Hadronic transport models including high mass resonance decays could also describe the ratios. While thermal calculations with GCE work well for strangeness production in high energy collisions, the change to CE at 3GeV implies a rather different medium property at high baryon density.
We report the first multi-differential measurements of strange hadrons of K−, ϕ and Ξ− yields as well as the ratios of ϕ/K− and ϕ/Ξ− in Au+Au collisions at sNN−−−√=3GeV with the STAR experiment fixed target configuration at RHIC. The ϕ mesons and Ξ− hyperons are measured through hadronic decay channels, ϕ→K+K− and Ξ−→Λπ−. Collision centrality and rapidity dependence of the transverse momentum spectra for these strange hadrons are presented. The 4π yields and ratios are compared to thermal model and hadronic transport model predictions. At this collision energy, thermal model with grand canonical ensemble (GCE) under-predicts the ϕ/K− and ϕ/Ξ− ratios while the result of canonical ensemble (CE) calculations reproduce ϕ/K−, with the correlation length rc∼2.7\,fm, and ϕ/Ξ−, rc∼4.2\,fm, for the 0-10\% central collisions. Hadronic transport models including high mass resonance decays could also describe the ratios. While thermal calculations with GCE work well for strangeness production in high energy collisions, the change to CE at 3GeV implies a rather different medium property at high baryon density.
We report the first multi-differential measurements of strange hadrons of K−, ϕ and Ξ− yields as well as the ratios of ϕ/K− and ϕ/Ξ− in Au+Au collisions at sNN−−−√=3GeV with the STAR experiment fixed target configuration at RHIC. The ϕ mesons and Ξ− hyperons are measured through hadronic decay channels, ϕ→K+K− and Ξ−→Λπ−. Collision centrality and rapidity dependence of the transverse momentum spectra for these strange hadrons are presented. The 4π yields and ratios are compared to thermal model and hadronic transport model predictions. At this collision energy, thermal model with grand canonical ensemble (GCE) under-predicts the ϕ/K− and ϕ/Ξ− ratios while the result of canonical ensemble (CE) calculations reproduce ϕ/K−, with the correlation length rc∼2.7\,fm, and ϕ/Ξ−, rc∼4.2\,fm, for the 0-10\% central collisions. Hadronic transport models including high mass resonance decays could also describe the ratios. While thermal calculations with GCE work well for strangeness production in high energy collisions, the change to CE at 3GeV implies a rather different medium property at high baryon density.
Measurement of cold nuclear matter effects for inclusive J/ψ in p+Au collisions at √sNN = 200 GeV
(2021)
Measurement by the STAR experiment at RHIC of the cold nuclear matter (CNM) effects experienced by inclusive J/ψ at mid-rapidity in p+Au collisions at sNN−−−√ = 200 GeV is presented. Such effects are quantified utilizing the nuclear modification factor, RpAu, obtained by taking a ratio of J/ψ yield in p+Au collisions to that in p+p collisions scaled by the number of binary nucleon-nucleon collisions. The differential J/ψ yield in both p+p and p+Au collisions is measured through the dimuon decay channel, taking advantage of the trigger capability provided by the Muon Telescope Detector in the RHIC 2015 run. Consequently, the J/ψ RpAu is derived within the transverse momentum (pT) range of 0 to 10 GeV/c. A suppression of approximately 30% is observed for pT<2 GeV/c, while J/ψ RpAu becomes compatible with unity for pT greater than 3 GeV/c, indicating the J/ψ yield is minimally affected by the CNM effects at high pT. Comparison to a similar measurement from 0-20% central Au+Au collisions reveals that the observed strong J/ψ suppression above 3 Gev/c is mostly due to the hot medium effects, providing strong evidence for the formation of the quark-gluon plasma in these collisions. Several model calculations show qualitative agreement with the measured J/ψ RpAu, while their agreement with the J/ψ yield in p+p and p+Au collisions is worse.