Refine
Language
- English (219)
Has Fulltext
- yes (219)
Is part of the Bibliography
- no (219)
Keywords
- Branching fraction (8)
- e +-e − Experiments (8)
- BESIII (5)
- Exotics (4)
- Lepton colliders (4)
- Particle and Resonance Production (4)
- Quarkonium (4)
- Spectroscopy (4)
- Charm Physics (3)
- Charmed mesons (3)
Institute
- Physik (218)
The first amplitude analysis of the decay D+s→K−K+π+π0 is presented using the data samples, corresponding to an integrated luminosity of 6.32 fb−1, collected with the BESIII detector at e+e− center-of-mass energies between 4.178 and 4.226 GeV. More than 3000 events selected with a purity of 97.5\% are used to perform the amplitude analysis, and nine components are found necessary to describe the data. Relative fractions and phases of the intermediate decays are determined. With the detection efficiency estimated by the results of the amplitude analysis, the branching fraction of D+s→K−K+π+π0 decay is measured to be (5.42±0.10stat.±0.17syst.)%.
We present the first amplitude analysis of the decay D+s→K−K+π+π0 using data samples of 6.32 fb−1 recorded with the BESIII detector between 4.178 and 4.226 GeV. More than 3000 events selected with a purity of 97.5\% are used to perform the amplitude analysis, and nine components are found necessary to describe the data. Relative fractions and phases of the intermediate decays are determined. With the detection efficiency determined by the results of the amplitude analysis, we measure the branching fraction of D+s→K−K+π+π0 decay to be (5.42±0.10stat.±0.17syst.)%.
We report new measurements of the cross sections for the production of Dbar D final states at the ψ(3770) resonance. Our data sample consists of an integrated luminosity of 2.93 fb−1 of e+e− annihilation data produced by the BEPCII collider and collected and analyzed with the BESIII detector. We exclusively reconstruct three D0 and six D+ hadronic decay modes and use the ratio of the yield of fully reconstructed Dbar D events ("double tags") to the yield of all reconstructed D or bar D mesons ("single tags") to determine the number of D0bar D0 and D+D− events, benefiting from the cancellation of many systematic uncertainties. Combining these yields with an independent determination of the integrated luminosity of the data sample, we find the cross sections to be σ(e+e− → D0bar D0) nb and σ(e+e− → D+D−) = (2.830 ± 0.011 ± 0.026) nb, where the uncertainties are statistical and systematic, respectively.
Using a data sample of (1.0087±0.0044)×1010 𝐽/𝜓 decay events collected with the BESIII detector at the center-of-mass energy of √𝑠=3.097 GeV, we present a search for the hyperon semileptonic decay Ξ0→Σ−𝑒+𝜈𝑒 which violates the Δ𝑆=Δ𝑄 rule. No significant signal is observed, and the upper limit on the branching fraction ℬ(Ξ0→Σ−𝑒+𝜈𝑒) is determined to be 1.6×10−4 at the 90% confidence level. This result improves the previous upper limit result by about one order of magnitude.
We study the electromagnetic Dalitz decay 𝐽/𝜓→𝑒+𝑒−𝜂 and search for dielectron decays of a dark gauge boson (𝛾′) in 𝐽/𝜓→𝛾′𝜂 with the two 𝜂 decay modes 𝜂→𝛾𝛾 and 𝜂→𝜋+𝜋−𝜋0 using (1310.6±7.0)×106 𝐽/𝜓 events collected with the BESIII detector. The branching fraction of 𝐽/𝜓→𝑒+𝑒−𝜂 is measured to be (1.43±0.04(stat)±0.06(syst))×10−5, with a precision that is improved by a factor of 1.5 over the previous BESIII measurement. The corresponding dielectron invariant mass dependent modulus square of the transition form factor is explored for the first time, and the pole mass is determined to be Λ=2.84±0.11(stat)±0.08(syst) GeV/𝑐2. We find no evidence of 𝛾′ production and set 90% confidence level upper limits on the product branching fraction ℬ(𝐽/𝜓→𝛾′𝜂)×ℬ(𝛾′→𝑒+𝑒−) as well as the kinetic mixing strength between the standard model photon and 𝛾′ in the mass range of 0.01≤𝑚𝛾′≤2.4 GeV/𝑐2.
Using a 3.19 fb−1 data sample collected at an 𝑒+𝑒− center-of-mass energy of 𝐸cm=4.178 GeV with the BESIII detector, we measure the branching fraction of the leptonic decay 𝐷+𝑠→𝜇+𝜈𝜇 to be ℬ𝐷+𝑠→𝜇+𝜈𝜇=(5.49±0.16stat±0.15syst)×10−3. Combining our branching fraction with the masses of the 𝐷+𝑠 and 𝜇+ and the lifetime of the 𝐷+𝑠, we determine 𝑓𝐷+𝑠|𝑉𝑐𝑠|=246.2±3.6stat±3.5syst MeV. Using the 𝑐→𝑠 quark mixing matrix element |𝑉𝑐𝑠| determined from a global standard model fit, we evaluate the 𝐷+𝑠 decay constant 𝑓𝐷+𝑠=252.9±3.7stat±3.6syst MeV. Alternatively, using the value of 𝑓𝐷+𝑠 calculated by lattice quantum chromodynamics, we find |𝑉𝑐𝑠|=0.985±0.014stat±0.014syst. These values of ℬ𝐷+𝑠→𝜇+𝜈𝜇, 𝑓𝐷+𝑠|𝑉𝑐𝑠|, 𝑓𝐷+𝑠 and |𝑉𝑐𝑠| are each the most precise results to date.
Using 𝑒+𝑒−→Λ+𝑐¯Λ−𝑐 production from a 567 pb−1 data sample collected by BESIII at 4.6 GeV, a full angular analysis is carried out simultaneously on the four decay modes of Λ+𝑐→𝑝𝐾0𝑆, Λ𝜋+, Σ+𝜋0, and Σ0𝜋+. For the first time, the Λ+𝑐 transverse polarization is studied in unpolarized 𝑒+𝑒− collisions, where a nonzero effect is observed with a statistical significance of 2.1𝜎. The decay asymmetry parameters of the Λ+𝑐 weak hadronic decays into 𝑝𝐾0𝑆, Λ𝜋+, Σ+𝜋0 and Σ0𝜋+ are measured to be 0.18±0.43(stat)±0.14(syst), −0.80±0.11(stat)±0.02(syst), −0.57±0.10(stat)±0.07(syst), and −0.73±0.17(stat)±0.07(syst), respectively. In comparison with previous results, the measurements for the Λ𝜋+ and Σ+𝜋0 modes are consistent but with improved precision, while the parameters for the 𝑝𝐾0𝑆 and Σ0𝜋+ modes are measured for the first time.
Improved measurement of the branching fractions of the inclusive decays D⁺ → Kₛ⁰X and D⁰ → Kₛ⁰X
(2023)
By analyzing 2.93 fb−1 of 𝑒+𝑒− collision data taken at the center-of-mass energy of 3.773 GeV with the BESIII detector, the branching fractions of the inclusive decays 𝐷+→𝐾0 𝑆𝑋 and 𝐷0→𝐾0 𝑆𝑋 are measured to be (33.11±0.13±0.36)% and (20.75±0.12±0.20)%, respectively, where the first uncertainties are statistical and the second are systematic. These results are consistent with the world averages of previous measurements, but with much improved precision.
Based on e+e− collision samples corresponding to an integrated luminosity of 4.4 fb−1 collected with the BESIII detector at center-of-mass energies between 4.6GeV and 4.7GeV, a partial wave analysis of the charmed baryon hadronic decay Λ+c→Λπ+π0 is performed, and the decays Λ+c→Λρ(770)+ and Λ+c→Σ(1385)π are studied for the first time. Making use of the world-average branching fraction B(Λ+c→Λπ+π0), their branching fractions are determined to be B(Λ+c→Λρ(770)+)=B(Λ+c→Σ(1385)+π0)=B(Λ+c→Σ(1385)0π+)=(4.06±0.30±0.35±0.23)×10−2,(5.86±0.49±0.52±0.35)×10−3,(6.47±0.59±0.66±0.38)×10−3, where the first uncertainties are statistical, the second are systematic, and the third are from the uncertainties of the branching fractions B(Λ+c→Λπ+π0) and B(Σ(1385)→Λπ). In addition, %according to amplitudes determined from the partial wave analysis, the decay asymmetry parameters are measured to be αΛρ(770)+=−0.763±0.053±0.039, αΣ(1385)+π0=−0.917±0.069±0.046, and αΣ(1385)0π+=−0.789±0.098±0.056.
Using data samples collected with the BESIII detector operating at the BEPCII storage ring, the cross section of the inclusive process e+e−→η+X, normalized by the total cross section of e+e−→hadrons, is measured at eight center-of-mass energy points from 2.0000 GeV to 3.6710 GeV. These are the first measurements with momentum dependence in this energy region. Our measurement shows a significant discrepancy from calculations with the existing fragmentation functions. To address this discrepancy, a new QCD analysis is performed at the next-to-next-to-leading order with hadron mass corrections and higher twist effects, which can explain both the established high-energy data and our measurements reasonably well.