Refine
Language
- English (23)
Has Fulltext
- yes (23)
Is part of the Bibliography
- no (23)
Keywords
- Charged-particle multiplicity (1)
- Di-hadron correlations (1)
- Flow (1)
- Heavy-ion (1)
- Interference fragmentation function (1)
- Multiple parton interactions (1)
- Nonflow (1)
- Quarkonium (1)
- Transversity (1)
- p+p collisions (1)
Institute
Rapidity-odd directed flow measurements at midrapidity are presented for Λ, Λ¯, K±, K0s and ϕ at sNN−−−−√= 7.7, 11.5, 14.5, 19.6, 27, 39, 62.4 and 200 GeV in Au+Au collisions recorded by the STAR detector at the Relativistic Heavy Ion Collider. These measurements greatly expand the scope of data available to constrain models with differing prescriptions for the equation of state of quantum chromodynamics. Results show good sensitivity for testing a picture where flow is assumed to be imposed before hadron formation and the observed particles are assumed to form via coalescence of constituent quarks. The pattern of departure from a coalescence-inspired sum-rule can be a valuable new tool for probing the collision dynamics.
The acceptance-corrected dielectron excess mass spectra, where the known hadronic sources have been subtracted from the inclusive dielectron mass spectra, are reported for the first time at mid-rapidity |yee|<1 in minimum-bias Au+Au collisions at sNN−−−−√ = 19.6 and 200 GeV. The excess mass spectra are consistently described by a model calculation with a broadened ρ spectral function for Mee<1.1 GeV/c2. The integrated dielectron excess yield at sNN−−−−√ = 19.6 GeV for 0.4<Mee<0.75 GeV/c2, normalized to the charged particle multiplicity at mid-rapidity, has a value similar to that in In+In collisions at sNN−−−−√ = 17.3 GeV. For sNN−−−−√ = 200 GeV, the normalized excess yield in central collisions is higher than that at sNN−−−−√ = 17.3 GeV and increases from peripheral to central collisions. These measurements indicate that the lifetime of the hot, dense medium created in central Au+Au collisions at sNN−−−−√ = 200 GeV is longer than those in peripheral collisions and at lower energies.
Di-hadron correlations with identified leading hadrons in 200 GeV Au+Au and d+Au collisions at STAR
(2015)
The STAR collaboration presents for the first time two-dimensional di-hadron correlations with identified leading hadrons in 200 GeV central Au+Au and minimum-bias d+Au collisions to explore hadronization mechanisms in the quark gluon plasma. The enhancement of the jet-like yield for leading pions in Au+Au data with respect to the d+Au reference and the absence of such an enhancement for leading non-pions (protons and kaons) are discussed within the context of a quark recombination scenario. The correlated yield at large angles, specifically in the \emph{ridge region}, is found to be significantly higher for leading non-pions than pions. The consistencies of the constituent quark scaling, azimuthal harmonic model and a mini-jet modification model description of the data are tested, providing further constraints on hadronization.
We report the direct virtual photon invariant yields in the transverse momentum ranges 1 < pT < 3 GeV/c and 5 < pT < 10 GeV/c at mid-rapidity derived from the dielectron invariant mass continuum region 0.10 < Mee < 0.28 GeV/c2 for 0–80% minimum-bias Au+Au collisions at √sN N = 200 GeV. A clear excess in the invariant yield compared to the nuclear overlap function T A A scaled p + p reference is observed in the pT range 1 < pT < 3 GeV/c. For pT > 6 GeV/c the production follows T A A scaling. Model calculations with contributions from thermal radiation and initial hard parton scattering are consistent ithin uncertainties with the direct virtual photon invariant yield.
A data-driven method was applied to Au+Au collisions at √sNN = 200 GeV made with the STAR detector at RHIC to isolate pseudorapidity distance η-dependent and η-independent correlations by using two- and four-particle azimuthal cumulant measurements. We identified a η-independent component of the correlation, which is dominated by anisotropic flow and flow fluctuations. It was also found to be independent of η within the measured range of pseudorapidity |η| < 1. In 20–30% central Au+Au collisions, the relative flow fluctuation was found to be 34%±2%(stat.)±3%(sys.) for particles with transverse momentum pT less than 2 GeV/c. The η-dependent part, attributed to nonflow correlations, is found to be 5% ± 2%(sys.) relative to the flow of the measured second harmonic cumulant at |η| > 0.7.
We present three-particle mixed-harmonic correlations 〈cos(mφa + nφb − (m + n)φc )〉 for harmonics m, n = 1 − 3 for charged particles in √sN N = 200 GeV Au+Au collisions at RHIC. These measurements provide information on the three-dimensional structure of the initial collision zone and are important for constraining models of a subsequent low-viscosity quark–gluon plasma expansion phase. We investigate correlations between the first, second and third harmonics predicted as a consequence of fluctuations in the initial state. The dependence of the correlations on the pseudorapidity separation between particles show hints of a breaking of longitudinal invariance. We compare our results to a number of state-of-the art hydrodynamic calculations with different initial states and temperature dependent viscosities. These measurements provide important steps towards constraining the temperature dependent viscosity and longitudinal structure of the initial state at RHIC.
Effect of event selection on jetlike correlation measurement in d+Au collisions at √sNN = 200 GeV
(2015)
Dihadron correlations are analyzed in √sNN = 200 GeV d + Au collisions classified by forward charged particle multiplicity and zero-degree neutral energy in the Au-beam direction. It is found that the jetlike correlated yield increases with the event multiplicity. After taking into account this dependence, the non-jet contribution on the away side is minimal, leaving little room for a back-to-back ridge in these collisions.
Fluctuations of conserved quantities such as baryon number, charge, and strangeness are sensitive to the correlation length of the hot and dense matter created in relativistic heavy-ion collisions and can be used to search for the QCD critical point. We report the first measurements of the moments of net-kaon multiplicity distributions in Au+Au collisions at √sNN = 7.7, 11.5, 14.5, 19.6, 27, 39, 62.4, and 200 GeV. The collision centrality and energy dependence of the mean (M), variance (σ 2), skewness (S), and kurtosis (κ) for net-kaon multiplicity distributions as well as the ratio σ 2/M and the products Sσ and κσ 2 are presented. Comparisons are made with Poisson and negative binomial baseline calculations as well as with UrQMD, a transport model (UrQMD) that does not include effects from the QCD critical point. Within current uncertainties, the net-kaon cumulant ratios appear to be monotonic as a function of collision energy.
The inclusive J/ψ transverse momentum spectra and nuclear modification factors are reported at midrapidity (|y| < 1.0) in Au+Au collisions at √sN N = 39, 62.4 and 200 GeV taken by the STAR experiment. A suppression of J/ψ production, with respect to the production in p + p scaled by the number of binary nucleon–nucleon collisions, is observed in central Au+Au collisions at these three energies. No significant energy dependence of nuclear modification factors is found within uncertainties. The measured nuclear modification factors can be described by model calculations that take into account both suppression of direct J/ψ production due to the color screening effect and J/ψ regeneration from recombination of uncorrelated charm–anticharm quark pairs.
The transversity distribution, which describes transversely polarized quarks in transversely polarized nucleons, is a fundamental component of the spin structure of the nucleon, and is only loosely constrained by global fits to existing semi-inclusive deep inelastic scattering (SIDIS) data. In transversely polarized p↑+p collisions it can be accessed using transverse polarization dependent fragmentation functions which give rise to azimuthal correlations between the polarization of the struck parton and the final state scalar mesons.This letter reports on spin dependent di-hadron correlations measured by the STAR experiment. The new dataset corresponds to 25 pb−1 integrated luminosity of p↑+p collisions at s=500 GeV, an increase of more than a factor of ten compared to our previous measurement at s=200 GeV. Non-zero asymmetries sensitive to transversity are observed at a Q2 of several hundred GeV and are found to be consistent with the former measurement and a model calculation. We expect that these data will enable an extraction of transversity with comparable precision to current SIDIS datasets but at much higher momentum transfers where subleading effects are suppressed.