Refine
Year of publication
- 2023 (2)
Language
- English (2)
Has Fulltext
- yes (2)
Is part of the Bibliography
- no (2)
Institute
- MPI für Biophysik (2)
- Physik (2)
- Biochemie und Chemie (1)
Cryo-electron tomography (CryoET) resolves individual macromolecules inside living cells. However, the complex composition and high density of cells challenge the faithful identification of features in tomograms. Here, we capitalize on recent advances in electron tomography and demonstrate that 3D template matching (TM) localizes a wide range of structures inside crowded eukaryotic cells with confidence 10 to 100-fold above the noise level. We establish a TM pipeline with systematically tuned parameters for automated, objective and comprehensive feature identification. High-fidelity and high-confidence localizations of nuclear pore complexes, vaults, ribosomes, proteasomes, lipid membranes and microtubules, and individual subunits, demonstrate that TM is generic. We resolve ~100-kDa proteins, connect the functional states of complexes to their cellular localization, and capture vaults carrying ribosomal cargo in situ. By capturing individual molecular events inside living cells with defined statistical confidence, high-confidence TM greatly speeds up the CryoET workflow and sets the stage for visual proteomics.
Cryo-electron tomography (cryo-ET) is a powerful method to elucidate subcellular architecture and to structurally analyse biomolecules in situ by subtomogram averaging (STA). Specimen thickness is a key factor affecting cryo-ET data quality. Cells that are too thick for transmission imaging can be thinned by cryo-focused-ion-beam (cryo-FIB) milling. However, optimal specimen thickness for cryo-ET on lamellae has not been systematically investigated. Furthermore, the ions used to ablate material can cause damage in the lamellae, thereby reducing STA resolution. Here, we systematically benchmark the resolution depending on lamella thickness and the depth of the particles within the sample. Up to ca. 180 nm, lamella thickness does not negatively impact resolution. This shows that there is no need to generate very thin lamellae and thickness can be chosen such that it captures major cellular features. Furthermore, we show that gallium-ion-induced damage extends to depths of up to 30 nm from either lamella surface.