Refine
Document Type
- Article (3)
- Bachelor Thesis (1)
- Conference Proceeding (1)
- Doctoral Thesis (1)
- Master's Thesis (1)
Has Fulltext
- yes (7)
Is part of the Bibliography
- no (7)
Keywords
- Beschleunigerphysik (2)
- Teilchenbeschleuniger (2)
- Alternating Phase Focusing (1)
- Beam Dynamic (1)
- Beam dynamics simulation (1)
- Continuous wave (1)
- Drift Tube Linac (1)
- FRANZ (1)
- Heavy ion (1)
- Informationsstruktur (1)
Institute
- Physik (6)
In dieser Arbeit wird der Strahltransport in einem CH-Driftröhrenbeschleuniger untersucht. Hierfür wurden numerische Simulationen zur elektromagnetischen Feldverteilung und dem strahldynamischen Einfluss der CH-Driftröhrenkavität durchgeführt. Sie fungiert als Prototyp für CH-Strukturen im Injektor des MYRRHA-Projekts, einem beschleunigergetriebenen System (ADS) zur Transmutation radioaktiven Abfalls. Zudem wird sie an der im Aufbau befindlichen Frankfurter Neutronenquelle am Stern-Gerlach-Zentrum (FRANZ) an der Goethe-Universität Frankfurt am Main experimentell mit Strahl getestet werden. FRANZ dient neben dem Einsatz als Experimentierfeld für neuartige Beschleuniger- und Strahldiagnostikkonzepte vor allem der Forschung im Bereich nuklearer Astrophysik.
Die vorliegende Arbeit befasst sich mit der Hochfrequenzabstimmung und den Feldoptimierungen zweier Linearbeschleunigerstrukturen für eine in der Entwicklung befindliche Forschungsanlage an der Goethe-Universität in Frankfurt am Main. Ein 4-Rod-RFQ sowie ein IH-Driftröhrenbeschleuniger sollen gekoppelt betrieben, d.h. nicht wie üblich von zwei, sondern nur von einem Hochfrequenz-Sender mit Leistung versorgt werden. Hierdurch lässt sich nicht nur der benötigte Platz reduzieren, sondern auch ein beträchtlicher Teil der Kosten des Projekts einsparen. Um das Verhalten der gekoppelten Beschleuniger genauer vorhersagen zu können, wurden Untersuchungen an bereits gebauten Modellen im Maßstab 1:2 durchgeführt und diese vermessen. Eine Methode zur systematischen Anpassung der Feldverteilung in 4-Rod-RFQs wurde darüber hinaus am einzeln betriebenen RFD-Modell angewandt und optimiert, sowie ein Algorithmus zur Automatisierung entwickelt. Parallel laufende Computersimulationen ermöglichten Vergleiche zu den realen Messwerten. Darüberhinaus konnten Rückschlüsse auf die Genauigkeit der Simulationen am Computermodell gezogen und hier liegende Herausforderungen, auch in Bezug auf die bei FRANZ zum Einsatz kommenden Beschleunigerstrukturen, näher untersucht werden. Hieraus resultierende Empfehlungen für das Design der FRANZ-IH-Struktur konnten gegeben werden und wurden bereits umgesetzt.
This dissertation describes the development of the beam dynamics design of a novel superconducting linear accelerator. At a main operating frequency of 216.816 MHz, ions with a mass-to-charge ratio of up to 6 can be accelerated at high duty cycles up to CW operation. Intended for construction at the GSI Helmholtz Centre for Heavy Ion Research in Darmstadt, the focus of the work is on the beam dynamic design of the accelerator section downstream of the high charge injector (HLI) at an injection energy of 1.39 MeV/u. An essential feature of this linear accelerator (Linac) is the use of the EQUUS (Equidistant Multigap Structure) beam dynamics concept for a variably adjustable output energy between 3.5 and 7.3 MeV/u (corresponding to about 12.4 % of the speed of light) with a required low energy spread of maximum 3 keV/u.
The GSI Helmholtz Centre for Heavy Ion Research is a large-scale research facility that uses its particle accelerators to perform basic research with ion beams. Research on super-heavy elements ("SHE") is a major focus. It is expected that their production and research will provide answers to a large number of scientific questions. The production and detection of elements with atomic numbers 107 to 112 (Bohrium, Hassium, Meitnerium, Darmstadtium, Röntgenium and Copernicium) was first achieved at GSI between 1981 and 1996.
Key to this remarkable progress in SHE research were continuous developments and technical innovations. On the one hand, in the field of experimental sensitivity and detection of the nuclear reaction products and, on the other hand, in the field of accelerator technology.
For the acceleration of the projectile beam, the UNILAC (Universal Linear Accelerator), which was put into operation in 1975, has been used at GSI so far. In the course of the reconstruction and expansion of the research infrastructure at GSI, a dedicated new particle accelerator, HELIAC (Helmholtz Linear Accelerator), is now under development to meet the special requirements of the beam parameters for the synthesis of new superheavy elements. Typically, the production rates of super-heavy elements with effective cross sections in the picobarn range are very low. Therefore, a high duty cycle (up to CW operation) is a key feature of HELIAC. Thus, the required beam time for the desired nuclear reactions can be significantly shortened.
Theoretical preliminary work by Minaev et al. and newly created knowledge about design, fabrication, and operation of superconducting drift tube cavities have laid the foundation for this work and thus the development of the HELIAC linear accelerator. It consists of a superconducting and a normal conducting part. Acceleration takes place in the superconducting part in four cryomodules, each about 5 m long. These contain three CH cavities, one buncher cavity, two solenoid magnets for transverse beam focusing, and two beam position monitors (BPMs).
The following 10 m long normal conducting part is primarily used for beam transport and ends with a buncher cavity. This is operated at a halved frequency of 108.408 MHz.
A key feature of this accelerator is the variability of the output energy from 3.5 to 7.3 MeV/u with a small energy uncertainty of ±3 keV/u maximum over the entire output energy range. For the development of HELIAC, the EQUUS beam dynamics concept used combined the advantages of conventional linac designs with the high acceleration gradients of superconducting CH-DTLs. By doubling the frequency (compared to the GSI high charge injector) to 216.816 MHz in the superconducting section and using CH cavities at an acceleration gradient of maximum 7.1 MV/m, an acceleration efficiency with superconducting drift tube structures that is unique in the world is made possible. At the same time, the compact lengths of the CH cavities ensure good handling for both production and operation. EQUUS leads to longitudinal beam stability in all energy ranges of the accelerator with the sliding motion of the synchronous phase within each CH cavity. The rms emittance growth is moderate in all levels. The modular design of the HELIAC with four cryomodules basically allows the Linac to be commissioned starting with the first cryomodule, the so-called Advanced Demonstrator. In the subsequent expansion stage with only the first two cryomodules of HELIAC, the lower limit of the energy range to be provided by HELIAC (3.5 MeV/u) can already be clearly exceeded, so that use in regular beam operation at GSI is already conceivable from here on.
By means of error tolerance studies, the stability of the HELIAC beam dynamics design against possible alignment errors of the magnetic focusing elements and accelerator cavities as well as errors of the electric field amplitudes and phases have been investigated, basically confirmed and critical parameters have been determined. An additional steering concept via dipole correction coils at the solenoid magnets allows transverse beam control as well as diagnostics by means of two BPMs per cryomodule.
With completion of this work in 2021, the CH1 and CH2 cavities have already been built and are in the final preparation and cold test phase. In parallel, the development of the CH cavities CH3-11 has also been started.
The upcoming commissioning of the superconducting (SC) continuous wave Helmholtz linear accelerators first of series cryomodule is going to demand precise alignment of the four internal SC cavities and two SC solenoids. For optimal results, a beam-based alignment method is used to reduce the misalignment of the whole cryomodule, as well as its individual components. A symmetric beam of low transverse emittance is required for this method, which is to be formed by a collimation system. It consists of two separate plates with milled slits, aligned in the horizontal and vertical direction. The collimation system and alignment measurements are proposed, investigated, and realized. The complete setup of this system and its integration into the existing environment at the GSI High Charge State Injector are presented, as well as the results of the recent reference measurements.
The new heavy ion superconducting continuous wave HElmholtz LInear ACcelerator (HELIAC) is under construction at GSI. A normal conducting injector, comprising an ECR ion source, an RFQ and a DTL, is recently in development. The new Interdigital H-mode DTL, presented in this paper, accelerates the heavy ion beam from 300 to 1400 keV/u, applying an Alternating Phase Focusing (APF) beam dynamics scheme. This APF section, consisting of two separately controlled tanks, has to provide for stable routine operation with assistance of dedicated beam diagnostics devices in the Intertank section. The installed quadrupole lenses and beam steerers installed there ensure full transmission in a wide range of input beam parameters.
This paper reports on Monte Carlo simulation results for future measurements of the moduli of time-like proton electromagnetic form factors, |GE | and |GM|, using the ¯pp → μ+μ− reaction at PANDA (FAIR). The electromagnetic form factors are fundamental quantities parameterizing the electric and magnetic structure of hadrons. This work estimates the statistical and total accuracy with which the form factors can be measured at PANDA, using an analysis of simulated data within the PandaRoot software framework. The most crucial background channel is ¯pp → π+π−,due to the very similar behavior of muons and pions in the detector. The suppression factors are evaluated for this and all other relevant background channels at different values of antiproton beam momentum. The signal/background separation is based on a multivariate analysis, using the Boosted Decision Trees method. An expected background subtraction is included in this study, based on realistic angular distribuations of the background contribution. Systematic uncertainties are considered and the relative total uncertainties of the form factor measurements are presented.