### Refine

#### Language

- English (13)

#### Has Fulltext

- yes (13)

#### Is part of the Bibliography

- no (13)

#### Keywords

- Energie (3)
- Zustandsgleichung (3)
- energy (3)
- equation of state (3)
- nucleon (3)
- Dirac (2)
- Dirac-Brueckner theory (2)
- Dirac-Brückner Theorie (2)
- Kollisionen schwerer Ionen (2)
- Nukleon (2)

#### Institute

An investigation of the transition to delta matter is performed based on a relativistic mean field formulation of the nonlinear sigma and omega model. We demonstrate that in addition to the Delta-meson coupling, the occurrence of the baryon resonance isomer also depends on the nucleon-meson coupling. Our results show that for the favored phenomenological value of m* and K, the Delta isomer exists at baryon density ~ 2–3 p0 if beta=1.31 is adopted. For universal coupling of the nucleon and Delta, the Delta density at baryon density ~ 2–3 p0 and temperature ~ 0.4–0.5 fm-1 is about normal nuclear matter density, which is in accord with a recent experimental finding.

We study the effects of isovector-scalar meson delta on the equation of state (EOS) of neutron star matter in strong magnetic fields. The EOS of neutron-star matter and nucleon effective masses are calculated in the framework of Lagrangian field theory, which is solved within the mean-field approximation. From the numerical results one can find that the delta-field leads to a remarkable splitting of proton and neutron effective masses. The strength of delta-field decreases with the increasing of the magnetic field and is little at ultrastrong field. The proton effective mass is highly influenced by magnetic fields, while the effect of magnetic fields on the neutron effective mass is negligible. The EOS turns out to be stiffer at B < 10^15G but becomes softer at stronger magnetic field after including the delta-field. The AMM terms can affect the system merely at ultrastrong magnetic field(B > 10^19G). In the range of 10^15 G - 10^18 G the properties of neutron-star matter are found to be similar with those without magnetic fields.

We develop a relativistic model to describe the bound states of positive energy and negative energy in finite nuclei at the same time. Instead of searching for the negative-energy solution of the nucleon s Dirac equation, we solve the Dirac equations for the nucleon and the anti-nucleon simultaneously. The single-particle energies of negative-energy nucleons are obtained through changing the sign of the single-particle energies of positive-energy anti-nucleons. The contributions of the Dirac sea to the source terms of the meson fields are evaluated by means of the derivative expansion up to the leading derivative order for the one-meson loop and one-nucleon loop. After refitting the parameters of the model to the properties of spherical nuclei, the results of positive-energy sector are similar to that calculated within the commonly used relativistic mean field theory under the no-sea approximation. However, the bound levels of negative-energy nucleons vary drastically when the vacuum contributions are taken into account. It implies that the negative-energy spectra deserve a sensitive probe to the e ective interactions in addition to the positive-energy spectra.

We develop a relativistic model to describe the bound states of positive energy and negative energy in finite nuclei at the same time. Instead of searching for the negative-energy solution of the nucleon's Dirac equation, we solve the Dirac equations for the nucleon and the anti-nucleon simultaneously. The single-particle energies of negative-energy nucleons are obtained through changing the sign of the single-particle energies of positive-energy anti-nucleons. The contributions of the Dirac sea to the source terms of the meson fields are evaluated by means of the derivative expansion up to the leading derivative order for the one-meson loop and one-nucleon loop. After refitting the parameters of the model to the properties of spherical nuclei, the results of positive-energy sector are similar to that calculated within the commonly used relativistic mean field theory under the no-sea approximation. However, the bound levels of negative-energy nucleons vary drastically when the vacuum contributions are taken into account. It implies that the negative-energy spectra deserve a sensitive probe to the effective interactions in addition to the positive-energy spectra.

We study the bound states of anti-nucleons emerging from the lower continuum in finite nuclei within the relativistic Hartree approach including the contributions of the Dirac sea to the source terms of the meson fields. The Dirac equation is reduced to two Schr¨odinger-equivalent equations for the nucleon and the anti-nucleon respectively. These two equations are solved simultaneously in an iteration procedure. Numerical results show that the bound levels of anti-nucleons vary drastically when the vacuum contributions are taken into account. PACS number(s): 21.10.-k; 21.60.-n; 03.65.Pm

A new chiral SU(3) Lagrangian is proposed to describe the properties of kaons and antikaons in the nuclear medium, the ground state of dense matter and the kaon-nuclear interactions consistently. The saturation properties of nuclear matter are reproduced as well as the results of the Dirac-Brückner theory. After taking into account the coupling between the omega meson and the kaon, we obtain similar results for the e ective kaon and antikaon energies as calculated in the one-boson-exchange model while in our model the parameters of the kaon-nuclear interactions are constrained by the SU(3) chiral symmetry. PACS number(s): 14.40.Aq, 12.39.Fe, 21.30.Fe

In this paper, the concepts of microscopic transport theory are introduced and the features and shortcomings of the most commonly used ansatzes are discussed. In particular, the Ultrarelativistic Quantum Molecular Dynamics (UrQMD) transport model is described in great detail. Based on the same principles as QMD and RQMD, it incorporates a vastly extended collision term with full baryon-antibaryon symmetry, 55 baryon and 32 meson species. Isospin is explicitly treated for all hadrons. The range of applicability stretches from E lab < 100$ MeV/nucleon up to E lab> 200$ GeV/nucleon, allowing for a consistent calculation of excitation functions from the intermediate energy domain up to ultrarelativistic energies. The main physics topics under discussion are stopping, particle production and collective flow.

A self-consistent relativistic integral-di erential equation of the Boltzmann- Uehling-Uhlenbeck-type for the N*(1440) resonance is developed based on an effective Lagrangian of baryons interacting through mesons. The closed time-path Green s function technique and semi-classical, quasi-particle and Born approxima- tions are employed in the derivation. The non-equilibrium RBUU-type equation for the N*(1440) is consistent with that of nucleon s and delta s which we derived before. Thus, we obtain a set of coupled equations for the N,Delta and N*(1440) distribution functions. All the N (1440)-relevant in-medium two-body scattering cross sections within the N,Delta and N*(1440) system are derived from the same effective Lagrangian in addition to the mean field and presented analytically, which can be directly used in the study of relativistic heavy-ion collisions. The theoreticalprediction of the free pp - pp* (1440) cross section is in good agreement with the experimental data. We calculate the in-medium N+N - N+N* , N* +N - N+N and N*+N - N* +N cross sections in cold nuclear matter up to twice the nuclear matter density. The influence of different choices of the N* N* coupling strengths, which can not be obtained through fitting certain experimental data, are discussed. The results show that the density dependence of predicted in-medium cross sections are sensitive to the N* N* coupling strengths used. An evident density dependence will appear when a large scalar coupling strength of g^(sigma) N*N* is assumed. PACS number(s): 24.10.Cn; 25.70.-z; 21.65.+f

A self-consistent relativistic Boltzmann-Uehling-Uhlenbeck equation for the N (1440) resonance is developed based on an effective Lagrangian of baryons interacting through mesons. The equation is consistent with that of nucleon s and delta s which we derived before. Thus, we obtain a set of coupled equations for the N, Delta and N (1440) distribution functions. All the N (1440)-relevant in-medium two-body scattering cross sections within the N, Delta and N (1440) system are derived from the same effective Lagrangian in addition to the mean field and presented analytically. Medium effects on the cross sections are discussed.

We derive the self-consistent relativistic quantum transport equation for the pion distribution function based on an effective Lagrangian of the QHD-II model. The closed time-path Green's function technique, the semi-classical, quasi-particle and Born approximation are employed in the derivation. Both the mean field and collision term are derived from the same Lagrangian and presented analytically. The dynamical equation for the pions is consistent with that for the nucleons and deltas which we developed before. Thus, we obtain a self-consistent relativistic transport model which describes the hadronic matter with N, Delta and pi degrees of freedom simultaneously. Within this approach, we investigate the medium effects on the pion dispersion relation as well as the pion absorption and pion production channels in cold nuclear matter. In contrast to the results of the non-relativistic model, the pion dispersion relation becomes harder at low momenta and softer at high momenta as compared to the free one. The theoretically predicted free pi N to Delta cross section is in agreement with the experimental data. Medium effects on the pi N to Delta cross section and momentum-dependent Delta-decay width are shown to be substantial.