Refine
Document Type
- Article (8)
- Doctoral Thesis (1)
Has Fulltext
- yes (9)
Is part of the Bibliography
- no (9)
Keywords
Institute
- Physik (6)
- ELEMENTS (4)
- Biochemie, Chemie und Pharmazie (1)
Die Synthese und Charakterisierung von neuartigen metallorganischen Koordinationsverbindungen hat in den vergangenen Jahrzehnten einen wahren Aufschwung erlebt. Aufgrund ihrer außerordentlichen strukturellen Vielfalt eröffnen sich zahlreiche Anwendungsmöglichkeiten über alle naturwissenschaftlich-technischen Domänen hinweg. Daher besteht ein allgemeines Interesse nicht nur in der Entwicklung neuer Verbindungen und Untersuchungen von Struktur-Eigenschafts-Beziehungen, sondern auch in einer Verbesserung ihrer Darstellungsmethoden.
Diese Dissertation beschäftigt sich mit Koordinationspolymeren und -netzwerken, die aus zweiwertigen 3d-Übergangsmetallhalogeniden (MX2, wie bspw. MnCl2 oder FeBr2) und Pyridin (py) bzw. Pyridinderivaten (CNpy, wie bspw. 3-Cyanopyridin) aufgebaut sind. Die Darstellung der Koordinationsverbindungen erfolgte in erster Linie über gewöhnliche Kristallisationsexperimente in alkoholischer Lösung, bei denen Phasen der Stöchiometrie [MX2(CNpy)4] oder [MX2(CNpy)2]n anfielen. Diese wurden anschließend systematisch erhitzt (“getempert“), was in der Regel zu einer stufenweisen und irreversiblen Abgabe eines Teils der Liganden führte, also bspw. von [MX2(CNpy)2]n zu [MX2(CNpy)1]n. Für diesen sog. „thermischen Abbau“ hat sich die Verwendung eines DTA-TG-Gerätes bewährt. Da die Zielverbindungen als mikrokristalline Pulver anfielen, erfolgte die Bestimmung ihrer Kristallstrukturen auf Basis von Röntgenpulverdaten.
Insgesamt wurden im Rahmen dieser Arbeit 41 neue Phasen synthetisiert und deren Kristallstrukturen aus Röntgenpulverdaten bestimmt. Zusammenfassend ist für die verschiedenen Pyridinderivate folgendes zu konstatieren:
3-Cyanopyridin
Im Falle der MBr2-Serie wurden für M = Mn, Fe, Co und Ni Koordinationsverbindungen der Stöchiometrie [MBr2(3-CNpy)4] erhalten, deren Kristallstrukturen aus diskreten Komplexmolekülen bestehen. Derart ligandenreiche Verbindungen konnten bei keiner der übrigen Serien erhalten werden. Alle Kristallstrukturen der Zusammensetzung [MX2(3-CNpy)2]n zeigen bei M = Mn, Fe, Co, Ni und Cu eine Kettenstruktur, in der die Halogenatome als µ2-Brückenliganden fungieren. Die Ketten weisen eine Fischgrät-Anordnung auf. Im Falle von [ZnX2(3-CNpy)2] werden ausschließlich diskrete Komplexmoleküle beobachtet. In allen Kristallstrukturen der [MCl2(3-CNpy)1]n-Serie liegen Doppelketten mit µ2- und µ3-verbrückenden Cl-Atomen vor. Hingegen weisen die Verbindungen der [MBr2(3-CNpy)1]n-Serie Netzwerkstrukturen auf, in denen, zusätzlich zu µ2-Cl-Atomen, über NCN-Atome gebrückt wird.
3,5-Dicyanopyridin
Aufgrund der umfassenden Erkenntnislage bei [NiCl2(CNpy)x]n und [NiCl(py)x]n- Verbindungen wurde NiCl2 für erste Experimente mit 3,5-Dicyanopyridin als neuem, bifunktionalem Liganden ausgewählt. Erwartungsgemäß führte deren Umsetzung zur Bildung von [NiCl2(3,5-CNpy)2]n, dessen Kristallstruktur das hinlänglich bekannte charakteristische Kettenmotiv aufweist. Thermischer Abbau von [NiCl2(3,5-CNpy)2]n führt indes nicht zur Bildung von [NiCl2(3,5-CNpy)1]n (bzw. grundsätzlich zu [NiCl2(3,5-CNpy)x<2]n (mit bi- oder gar tridentatem Liganden), sondern unmittelbar zur vollständigen Zersetzung in NiCl2 und 3,5-CNpy. Daher sollten weitere Experimente mit NiBr2 als Edukt durchgeführt werden, da in [NiBr2(CNpy)1]n neben Npy auch NCN an Ni-Atome zu koordinieren vermag, wodurch ja deren Netzwerkstrukturen resultieren.
4-Cyanopyridin
Alle Kristallstrukturen der Zusammensetzung [MX2(4-CNpy)2]n zeigen bei M = Mn, Fe, Co, Ni und Cu ebenfalls eine Kettenstruktur, in der die Halogenatome als µ2-Brückenliganden fungieren. Auch in diesen Kristallstrukturen liegt eine Fischgrät-Anordnung der Ketten vor. Im Falle von [ZnX2(4-CNpy)2] werden ausschließlich diskrete Komplexmoleküle beobachtet. In allen Kristallstrukturen der [MX2(4-CNpy)1]n-Serie liegen Netzwerkstrukturen vor, in denen die Metallatome über µ2-Halogenatome und NCN-Atome verbrückt werden. Alle Kristallstrukturen der [MBr2(4-CNpy)1]n-Serie sind charakteristisch fehlgeordnet, da die Orientierung der 4-CNpy-Liganden invertiert wird („Kopf-Schwanz“-Fehlordnung).
Tento článek je kritickým posouzením předsudku, který stále nedotčeně přetrvává při četbě novely 'Die Judenbuche' Anetty von Droste-Hülshoff. Ve většině interpretací tohoto textu je Friedrich Mergel rozpoznán a analyzován jako vrah. Předložený rozbor ukazuje, že novela obsahuje značný počet rozporuplných prvků, které nedovolují Friedrichovo odsouzení. Proto by mělo být cílem četby zamyšlení, které je v textu obsaženo, a ne rozsudek.
Quasifree one-proton knockout reactions have been employed in inverse kinematics for a systematic study of the structure of stable and exotic oxygen isotopes at the R3B/LAND setup with incident beam energies in the range of 300–450 MeV/u. The oxygen isotopic chain offers a large variation of separation energies that allows for a quantitative understanding of single-particle strength with changing isospin asymmetry. Quasifree knockout reactions provide a complementary approach to intermediate-energy one-nucleon removal reactions. Inclusive cross sections for quasifree knockout reactions of the type AO(p,2p)A−1N have been determined and compared to calculations based on the eikonal reaction theory. The reduction factors for the single-particle strength with respect to the independent-particle model were obtained and compared to state-of-the-art ab initio predictions. The results do not show any significant dependence on proton-neutron asymmetry.
The nucleosynthesis of elements beyond iron is dominated by neutron captures in the s and r processes. However, 32 stable, proton-rich isotopes cannot be formed during those processes, because they are shielded from the s-process flow and r-process β-decay chains. These nuclei are attributed to the p and rp process.
For all those processes, current research in nuclear astrophysics addresses the need for more precise reaction data involving radioactive isotopes. Depending on the particular reaction, direct or inverse kinematics, forward or time-reversed direction are investigated to determine or at least to constrain the desired reaction cross sections.
The Facility for Antiproton and Ion Research (FAIR) will offer unique, unprecedented opportunities to investigate many of the important reactions. The high yield of radioactive isotopes, even far away from the valley of stability, allows the investigation of isotopes involved in processes as exotic as the r or rp processes.
The neutron-unbound isotope 13Be has been studied in several experiments using different reactions, different projectile energies, and different experimental setups. There is, however, no real consensus in the interpretation of the data, in particular concerning the structure of the low-lying excited states. Gathering new experimental information, which may reveal the 13Be structure, is a challenge, particularly in light of its bridging role between 12Be, where the N = 8 neutron shell breaks down, and the Borromean halo nucleus 14Be. The purpose of the present study is to investigate the role of bound excited states in the reaction product 12Be after proton knockout from 14B, by measuring coincidences between 12Be, neutrons, and γ rays originating from de-excitation of states fed by neutron decay of 13Be. The 13Be isotopes were produced in proton knockout from a 400 MeV/nucleon 14B beam impinging on a CH2 target. The 12 Be-n relative-energy spectrum d σ /d Ef n was obtained from coincidences between 12Be(g.s.) and a neutron, and also as threefold coincidences by adding γ rays, from the de-excitation of excited states in 12Be. Neutron decay from the first 5/2+ state in 13Be to the 2+ state in 12Be at 2.11 MeV is confirmed. An energy independence of the proton-knockout mechanism is found from a comparison with data taken with a 35 MeV/nucleon 14B beam. A low-lying p-wave resonance in 13Be(1/2−) is confirmed by comparing proton- and neutron-knockout data from 14B and 14Be.
The proton drip-line nucleus 17Ne is investigated experimentally in order to determine its two-proton halo character. A fully exclusive measurement of the 17Ne(p, 2p)16F∗ →15O+p quasi-free one-proton knockout reaction has been performed at GSI at around 500 MeV/nucleon beam energy. All particles resulting from the scattering process have been detected. The relevant reconstructed quantities are the angles of the two protons scattered in quasi-elastic kinematics, the decay of 16F into 15O (including γ decays from excited states) and a proton, as well as the 15O+p relative-energy spectrum and the 16F momentum distributions. The latter two quantities allow an independent and consistent determination of the fractions of l = 0 and l = 2 motion of the valence protons in 17Ne. With a resulting relatively small l = 0 component of only around 35(3)%, it is concluded that 17Ne exhibits a rather modest halo character only. The quantitative agreement of the two values deduced from the energy spectrum and the momentum distributions supports the theoretical treatment of the calculation of momentum distributions after quasi-free knockout reactions at high energies by taking into account distortions based on the Glauber theory. Moreover, the experimental data allow the separation of valence-proton knockout and knockout from the 15O core. The latter process contributes with 11.8(3.1) mb around 40% to the total proton-knockout cross section of 30.3(2.3) mb, which explains previously reported contradicting conclusions derived from inclusive cross sections.
The quasi-free scattering reactions 11C(p, 2p) and 10,11,12C(p, pn) have been studied in inverse kinematics at beam energies of 300–400 MeV/u at the R3B-LAND setup. The outgoing proton-proton and protonneutron pairs were detected in coincidence with the reaction fragments in kinematically complete measurements. The efficiency to detect these pairs has been obtained from GEANT4 simulations which were tested using the 12C(p, 2p) and 12C(p, pn) reactions. Experimental cross sections and momentum distributions have been obtained and compared to DWIA calculations based on eikonal theory. The new results reported here are combined with previously published cross sections for quasi-free scattering from oxygen and nitrogen isotopes and together they enable a systematic study of the reduction of singleparticle strength compared to predictions of the shell model over a wide neutron-to-proton asymmetry range. The combined reduction factors show a weak or no dependence on isospin asymmetry, in contrast to the strong dependency reported in nucleon-removal reactions induced by nuclear targets at lower energies. However, the reduction factors for (p, 2p) are found to be ’significantly smaller than for (p, pn) reactions for all investigated nuclei.
The evolution of the traditional nuclear magic numbers away from the valley of stability is an active field of research. Experimental efforts focus on providing key spectroscopic information that will shed light into the structure of exotic nuclei and understanding the driving mechanism behind the shell evolution. In this work, we investigate the spin-orbit shell gap towards the neutron dripline. To do so, we employed (p,2p) quasi-free scattering reactions to measure the proton component of the state of 16,18,20C. The experimental findings support the notion of a moderate reduction of the proton spin-orbit splitting, at variance to recent claims for a prevalent magic number towards the neutron dripline.
We measured the Coulomb dissociation of 16O into 4He and 12C at the R3B setup in a first campaign within FAIR Phase 0 at GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt. The goal was to improve the accuracy of the experimental data for the 12C(α,γ)16O fusion reaction and to reach lower center-ofmass energies than measured so far.
The experiment required beam intensities of 109 16O ions per second at an energy of 500 MeV/nucleon. The rare case of Coulomb breakup into 12C and 4He posed another challenge: The magnetic rigidities of the particles are so close because of the same mass-to-charge-number ratio A/Z = 2 for 16O, 12C and 4He. Hence, radical changes of the R3B setup were necessary. All detectors had slits to allow the passage of the unreacted 16O ions, while 4He and 12C would hit the detectors' active areas depending on the scattering angle and their relative energies. We developed and built detectors based on organic scintillators to track and identify the reaction products with sufficient precision.