Background: Understanding the location and cell-type specific binding of Transcription Factors (TFs) is important in the study of gene regulation. Computational prediction of TF binding sites is challenging, because TFs often bind only to short DNA motifs and cell-type specific co-factors may work together with the same TF to determine binding. Here, we consider the problem of learning a general model for the prediction of TF binding using DNase1-seq data and TF motif description in form of position specific energy matrices (PSEMs).
Methods: We use TF ChIP-seq data as a gold-standard for model training and evaluation. Our contribution is a novel ensemble learning approach using random forest classifiers. In the context of the ENCODE-DREAM in vivo TF binding site prediction challenge we consider different learning setups.
Results: Our results indicate that the ensemble learning approach is able to better generalize across tissues and cell-types compared to individual tissue-specific classifiers or a classifier built based upon data aggregated across tissues. Furthermore, we show that incorporating DNase1-seq peaks is essential to reduce the false positive rate of TF binding predictions compared to considering the raw DNase1 signal.
Conclusions: Analysis of important features reveals that the models preferentially select motifs of other TFs that are close interaction partners in existing protein protein-interaction networks. Code generated in the scope of this project is available on GitHub: https://github.com/SchulzLab/TFAnalysis (DOI: 10.5281/zenodo.1409697).
Background: Enhancers play a fundamental role in orchestrating cell state and development. Although several methods have been developed to identify enhancers, linking them to their target genes is still an open problem. Several theories have been proposed on the functional mechanisms of enhancers, which triggered the development of various methods to infer promoter–enhancer interactions (PEIs). The advancement of high-throughput techniques describing the three-dimensional organization of the chromatin, paved the way to pinpoint long-range PEIs. Here we investigated whether including PEIs in computational models for the prediction of gene expression improves performance and interpretability.
Results: We have extended our TEPIC framework to include DNA contacts deduced from chromatin conformation capture experiments and compared various methods to determine PEIs using predictive modelling of gene expression from chromatin accessibility data and predicted transcription factor (TF) motif data. We designed a novel machine learning approach that allows the prioritization of TFs binding to distal loop and promoter regions with respect to their importance for gene expression regulation. Our analysis revealed a set of core TFs that are part of enhancer–promoter loops involving YY1 in different cell lines.
Conclusion: We present a novel approach that can be used to prioritize TFs involved in distal and promoter-proximal regulatory events by integrating chromatin accessibility, conformation, and gene expression data. We show that the integration of chromatin conformation data can improve gene expression prediction and aids model interpretability.
Background: Understanding the location and cell-type specific binding of Transcription Factors (TFs) is important in the study of gene regulation. Computational prediction of TF binding sites is challenging, because TFs often bind only to short DNA motifs and cell-type specific co-factors may work together with the same TF to determine binding. Here, we consider the problem of learning a general model for the prediction of TF binding using DNase1-seq data and TF motif description in form of position specific energy matrices (PSEMs).
Methods: We use TF ChIP-seq data as a gold-standard for model training and evaluation. Our contribution is a novel ensemble learning approach using random forest classifiers. In the context of the ENCODE-DREAM in vivo TF binding site prediction challenge we consider different learning setups.
Results: Our results indicate that the ensemble learning approach is able to better generalize across tissues and cell-types compared to individual tissue-specific classifiers or a classifier applied to the data aggregated across tissues. Furthermore, we show that incorporating DNase1-seq peaks is essential to reduce the false positive rate of TF binding predictions compared to considering the raw DNase1 signal.
Conclusions: Analysis of important features reveals that the models preferentially select motifs of other TFs that are close interaction partners in existing protein protein-interaction networks. Code generated in the scope of this project is available on GitHub: https://github.com/SchulzLab/TFAnalysis (DOI: 10.5281/zenodo.1409697)
Specialized de novo assemblers for diverse datatypes have been developed and are in widespread use for the analyses of single-cell genomics, metagenomics and RNA-seq data. However, assembly of large sequencing datasets produced by modern technologies is challenging and computationally intensive. In-silico read normalization has been suggested as a computational strategy to reduce redundancy in read datasets, which leads to significant speedups and memory savings of assembly pipelines. Previously, we presented a set multi-cover optimization based approach, ORNA, where reads are reduced without losing important k-mer connectivity information, as used in assembly graphs. Here we propose extensions to ORNA, named ORNA-Q and ORNA-K, which consider a weighted set multi-cover optimization formulation for the in-silico read normalization problem. These novel formulations make use of the base quality scores obtained from sequencers (ORNA-Q) or k-mer abundances of reads (ORNA-K) to improve normalization further. We devise efficient heuristic algorithms for solving both formulations. In applications to human RNA-seq data, ORNA-Q and ORNA-K are shown to assemble more or equally many full length transcripts compared to other normalization methods at similar or higher read reduction values. The algorithm is implemented under the latest version of ORNA (v2.0, https://github.com/SchulzLab/ORNA).
The transcription factor vitamin D receptor (VDR) is the high affinity nuclear target of the biologically active form of vitamin D3 (1,25(OH)2D3). In order to identify pure genomic transcriptional effects of 1,25(OH)2D3, we used VDR cistrome, transcriptome and open chromatin data, obtained from the human monocytic cell line THP-1, for a novel hierarchical analysis applying three bioinformatics approaches. We predicted 75.6% of all early 1,25(OH)2D3-responding (2.5 or 4 h) and 57.4% of the late differentially expressed genes (24 h) to be primary VDR target genes. VDR knockout led to a complete loss of 1,25(OH)2D3–induced genome-wide gene regulation. Thus, there was no indication of any VDR-independent non-genomic actions of 1,25(OH)2D3 modulating its transcriptional response. Among the predicted primary VDR target genes, 47 were coding for transcription factors and thus may mediate secondary 1,25(OH)2D3 responses. CEBPA and ETS1 ChIP-seq data and RNA-seq following CEBPA knockdown were used to validate the predicted regulation of secondary vitamin D target genes by both transcription factors. In conclusion, a directional network containing 47 partly novel primary VDR target transcription factors describes secondary responses in a highly complex vitamin D signaling cascade. The central transcription factor VDR is indispensable for all transcriptome-wide effects of the nuclear hormone.
Several studies suggested that transcription factor (TF) binding to DNA may be impaired or enhanced by DNA methylation. We present MeDeMo, a toolbox for TF motif analysis that combines information about DNA methylation with models capturing intra-motif dependencies. In a large-scale study using ChIP-seq data for 335 TFs, we identify novel TFs that are affected by DNA methylation. Overall, we find that CpG methylation decreases the likelihood of binding for the majority of TFs. For a considerable subset of TFs, we show that intra-motif dependencies are pivotal for accurately modelling the impact of DNA methylation on TF binding.
Motivation DNA CpG methylation (CpGm) has proven to be a crucial epigenetic factor in the gene regulatory system. Assessment of DNA CpG methylation values via whole-genome bisulfite sequencing (WGBS) is, however, computationally extremely demanding.
Results We present FAst MEthylation calling (FAME), the first approach to quantify CpGm values directly from bulk or single-cell WGBS reads without intermediate output files. FAME is very fast but as accurate as standard methods, which first produce BS alignment files before computing CpGm values. We present experiments on bulk and single-cell bisulfite datasets in which we show that data analysis can be significantly sped-up and help addressing the current WGBS analysis bottleneck for large-scale datasets without compromising accuracy.
Availability An implementation of FAME is open source and licensed under GPL-3.0 at https://github.com/FischerJo/FAME.
Midbrain dopaminergic neurons (mDANs) control voluntary movement, cognition, and reward behavior under physiological conditions and are implicated in human diseases such as Parkinson’s disease (PD). Many transcription factors (TFs) controlling human mDAN differentiation during development have been described, but much of the regulatory landscape remains undefined. Using a tyrosine hydroxylase (TH) iPSC reporter line, we have generated time series transcriptomic and epigenomic profiles of purified mDANs during differentiation. Integrative analysis predicted novel central regulators of mDAN differentiation and super-enhancers were used to prioritize key TFs. We find LBX1, NHLH1 and NR2F1/2 to be necessary for mDAN differentiation and show that overexpression of either LBX1 or NHLH1 can also improve mDAN specification. NHLH1 is necessary for the induction of neuronal miR-124, while LBX1 regulates cholesterol biosynthesis, possibly through mTOR signaling. Consistently, rapamycin treatment led to an inhibition of mDAN differentiation. Thus, our work reveals novel regulators of human mDAN differentiation.
Genome-wide CRISPR screens are becoming more widespread and allow the simultaneous interrogation of thousands of genomic regions. Although recent progress has been made in the analysis of CRISPR screens, it is still an open problem how to interpret CRISPR mutations in non-coding regions of the genome. Most of the tools concentrate on the interpretation of mutations introduced in gene coding regions. We introduce a computational pipeline that uses epigenomic information about regulatory elements for the interpretation of CRISPR mutations in non-coding regions. We illustrate our approach on the analysis of a genome-wide CRISPR screen in hTERT-RPE-1 cells and reveal novel regulatory elements that mediate chemoresistance against doxorubicin in these cells. We infer links to established and to novel chemoresistance genes. Our approach is general and can be applied on any cell type and with different CRISPR enzymes.
Most sRNA biogenesis mechanisms involve either RNAseIII cleavage or ping-pong amplification by different Piwi proteins harboring slicer activity. Here, we follow the question why the mechanism of transgene-induced silencing in the ciliate Paramecium needs both Dicer activity and two Ptiwi proteins. This pathway involves primary siRNAs produced from non-translatable transgenes and secondary siRNAs from endogenous remote loci. Our data does not indicate any signatures from ping-pong amplification but Dicer cleavage of long dsRNA. We show that Ptiwi13 and 14 have different preferences for primary and secondary siRNAs but do not load them mutually exclusive. Both Piwis enrich for antisense RNAs and Ptiwi14 loaded siRNAs show a 5′-U signature. Both Ptiwis show in addition a general preference for Uridine-rich sRNAs along the entire sRNA length. Our data indicates both Ptiwis and 2’-O-methylation to contribute to strand selection of Dicer cleaved siRNAs. This unexpected function of two distinct vegetative Piwis extends the increasing knowledge of the diversity of Piwi functions in diverse silencing pathways. As both Ptiwis show differential subcellular localisation, Ptiwi13 in the cytoplasm and Ptiwi14 in the vegetative macronucleus, we conclude that cytosolic and nuclear silencing factors are necessary for efficient chromatin silencing.