Refine
Document Type
- Article (9)
- Doctoral Thesis (1)
Language
- English (10)
Has Fulltext
- yes (10)
Is part of the Bibliography
- no (10)
Keywords
- Atmospheric science (2)
- Climate change (2)
- Atmospheric chemistry (1)
- COVID-19 lockdown (1)
- air polluntants (1)
- aircraft measurement (1)
- ambient ions (1)
- mass spectrometry (1)
Institute
- Geowissenschaften / Geographie (7)
- Geowissenschaften (1)
- Medizin (1)
Ambient ions play an important role in atmospheric processes such as ion-induced new particle formation. While there are several studies of ambient ions for different layers of the atmosphere, data coverage for the free troposphere and especially the upper troposphere and lower stratosphere (UTLS) region is scarce. Here, we present the first airborne measurements of ambient ions using a high-resolution atmospheric pressure interface time-of-flight mass spectrometer (HR-APi-TOF-MS) in the free troposphere and lower stratosphere above Europe on board the HALO aircraft during the CAFE-EU/BLUESKY campaign in May and June 2020. In negative measurement mode, we observed nitrate and hydrogen sulfate and their related ion clusters in an altitude range of 4.7 to 13.4 km. The horizontal profiles for those ions reveal an increasing count rate for NO and (HNO3)NO towards higher altitudes but no significant trend for HSO4−. From the count rates of the nitrate (NO) and hydrogen sulfate (HSO) core ions, we inferred the number concentration of gaseous sulfuric acid. The lowest average value was found to be 1.9×105 cm−3 at the maximum altitude bin, i.e. 13.4 km. The highest average value of 7.8×105 cm−3 was observed in the 8.7–9.2 km altitude bin. During the transit through a mixed-phase cloud, we observed an event of enhanced ion count rates and aerosol particle concentrations that can largely be assigned to nitrate ions and particles, respectively; this may have been caused by the shattering of liquid cloud droplets on the surface of the aircraft or the inlet. Furthermore, we report the proof of principle for the measurement of ambient cations and the identification of protonated pyridine.
Ob Klimawandel oder Luftverschmutzung: Die chemischen und physikalischen Prozesse in der Atmosphäre haben wichtige Auswirkungen auf die menschliche Gesundheit und Ökosysteme. Dabei ist die Atmosphäre mehr als ein Gemisch aus Stickstoff, Sauerstoff, Wasserdampf, Helium und Kohlenstoffdioxid. Es gibt zahlreiche Spurengase, deren Gesamtanteil am Volumen weniger als 1 % ausmacht. In dieser Arbeit werden Stickstoffoxide, Schwefeldioxid, Kohlenstoffmonoxid und Schwefelsäure näher betrachtet, die im Rahmen der flugzeugbasierten Messkampagne Chemistry of the Atmosphere: field experiment in Europe (CAFE-EU)/BLUESKY gemessen wurden.
Die Stickstoffoxide NO und NO2, als NOx zusammengefasst, besitzen hauptsächlich anthropogene Quellen, allen voran fossile Verbrennung und industrielle Prozesse. Zwischen NO und NO2 besteht ein photochemisches Gleichgewicht, sodass in der Atmosphäre vor allem NO2 in relevanten Konzentrationen vorkommt; dies wirkt aufgrund der Bildung von Salpetersäure, HNO3, in wässriger Lösung beim Einatmen ätzend und ist entsprechend gesundheitsschädlich. Troposphärisches Ozon, O3, wesentlicher Bestandteil von Sommersmog, wird hauptsächlich durch die Reaktion von NO mit Peroxiden (HO2 und RO2) gebildet. In der Stratosphäre entstehen NOx hauptsächlich durch die Photodissoziation von Lachgas, N2O, das aufgrund seiner langen Lebenszeit von der Tropo- in die Stratosphäre transportiert werden kann und dort die wichtigste Stickstoffquelle darstellt. In der Stratosphäre tragen NOx zum katalytischen Abbaumechanismus des Ozons bei (Bliefert, 2002; Seinfeld and Pandis, 2016).
Schwefeldioxid, SO2, ist ein toxisches Gas, dessen atmosphärische Quellen hauptsächlich anthropogen sind, nämlich fossile Verbrennung und industrielle Prozesse; Senken sind trockene und feuchte Deposition, wobei letztere zu saurem Regen führen kann. Seit den 1980ern sinken die globalen SO2-Emissionen. SO2 kann in der Atmosphäre zu Sulfat und Schwefelsäure oxidiert werden, was Hauptbestandteil des Wintersmogs ist. Der wichtigste Mechanismus ist die Oxidation mit dem Hydroxylradikal, OH˙, unter Beteiligung von Wasserdampf. In der Stratosphäre ist Carbonylsulfid, OCS, die wichtigste Schwefelquelle, da es analog zum N2O dank seiner langen Lebenszeit von der Tropo- in die Stratosphäre transportiert werden kann (Bliefert, 2002; Seinfeld und Pandis, 2016). Typische Konzentrationen von Schwefelsäure sind 105 cm–3 nachts und 107 cm–3 tagsüber in der Troposphäre sowie 105 cm–3 tagsüber in der Stratosphäre (Clarke et al., 1999; Weber et al., 1999; Fiedler et al., 2005; Arnold, 2008; Kürten et al., 2016; Berresheim et al., 2000).
Kohlenstoffmonoxid, CO, ist ein toxisches Gas, das zu gleichen Teilen durch direkte Emissionen (v.a. Biomasseverbrennung und fossile Verbrennung) und In-situ-Oxidation (v.a. von Methan, Isopren und industriellen Kohlenwasserstoffen) in die Atmosphäre gelangt. Die Hauptsenke ist die Reaktion mit OH˙ in der Troposphäre. Seit 2000 sinkt die globale CO-Konzentration (Bliefert, 2002).
Doch neben Gasen sind auch Aerosolpartikel fester Bestandteil des Gemisches Luft, welche luftgetragene feste oder flüssige Teilchen sind. Primäre Aerosolpartikel werden direkt als solche in die Atmosphäre emittiert, während sekundäre Aerosolpartikel in der Atmosphäre gebildet werden, indem gasförmige Vorläufersubstanzen mit geringer Flüchtigkeit auf primären Partikeln kondensieren oder durch Zusammenclustern und Anwachsen komplett neue Partikel bilden. Aerosolpartikel ermöglichen als Wolkenkondensationskeime erst die Bildung von Wolken und wirken somit – neben ihrem direkten reflektierenden Effekt – durch Änderung der Wolkenbedeckung und -eigenschaften insgesamt kühlend aufs Klima und beeinflussen die lokalen und globalen Wasserkreisläufe. Doch sie haben auch negative Auswirkungen auf die menschliche Gesundheit und sind für eine Verkürzung der durchschnittlichen Lebensdauer in Regionen mit hohen Feinstaubbelastungen verantwortlich (Seinfeld und Pandis, 2016; Bellouin et al., 2020; World Health Organization, 2016).
Neben den bisher betrachteten neutralen, also ungeladenen Gasen und Partikeln sind Ionen in der Gasphase sowie geladene Partikel ebenfalls Bestandteil der Atmosphäre. Sie spielen bei vielen atmosphärischen Prozessen eine wichtige Rolle, wie etwa bei Gewittern, Radiowellenübertragung und ionen-induzierter Nukleation von Aerosolpartikeln. Die Hauptquellen für Ionisation in der Tropo- und Stratosphäre ist die galaktische kosmische Strahlung, die entgegen ihrem Namen hauptsächlich aus Protonen und α-Partikeln (primäre Partikel genannt) besteht und in der Erdatmosphäre durch Kollision mit Luftmolekülen Teilchenschauer von sekundären Partikeln (u.a. Myonen, Pionen und Neutrinos) hervorruft. Die primären und sekundären Partikel können die Luftmoleküle ionisieren unter Entstehung von N+, N2+, O+, O2+ und Elektronen. Sauerstoff reagiert rasch mit letzteren zu O– und O2–. Diese Kationen und Anionen reagieren weiter, bis Ionenclustern der Summenformeln (HNO3)n(H2O)mNO3– und H+(H2O)n(B)m gebildet werden, wobei B Basen wie Methanol, Aceton, Ammoniak oder Pyridin sind. Weitere Ionisationsquellen sind der Zerfall des Radioisotops 222Rn in Bodennähe und ionisierende Solarstrahlung oberhalb der Stratosphäre. Atmosphärische Ionen haben zwei wichtige Senken: die Wiedervereinigung, auch Rekombination genannt, bei der sich ein Kation und ein Anion gegenseitig neutralisieren sowie das Anhaften an Aerosolpartikeln. Letztere Senke ist vor allem in der Troposphäre aufgrund der relativ hohen Konzentration an Aerosolpartikeln relevant (Arnold, 2008; Viggiano und Arnold, 1995; Bazilevskaya et al., 2008; Hirsikko et al., 2011).
A list of authors and their affiliations appears at the end of the paper New-particle formation is a major contributor to urban smog, but how it occurs in cities is often puzzling. If the growth rates of urban particles are similar to those found in cleaner environments (1–10 nanometres per hour), then existing understanding suggests that new urban particles should be rapidly scavenged by the high concentration of pre-existing particles. Here we show, through experiments performed under atmospheric conditions in the CLOUD chamber at CERN, that below about +5 degrees Celsius, nitric acid and ammonia vapours can condense onto freshly nucleated particles as small as a few nanometres in diameter. Moreover, when it is cold enough (below −15 degrees Celsius), nitric acid and ammonia can nucleate directly through an acid–base stabilization mechanism to form ammonium nitrate particles. Given that these vapours are often one thousand times more abundant than sulfuric acid, the resulting particle growth rates can be extremely high, reaching well above 100 nanometres per hour. However, these high growth rates require the gas-particle ammonium nitrate system to be out of equilibrium in order to sustain gas-phase supersaturations. In view of the strong temperature dependence that we measure for the gas-phase supersaturations, we expect such transient conditions to occur in inhomogeneous urban settings, especially in wintertime, driven by vertical mixing and by strong local sources such as traffic. Even though rapid growth from nitric acid and ammonia condensation may last for only a few minutes, it is nonetheless fast enough to shepherd freshly nucleated particles through the smallest size range where they are most vulnerable to scavenging loss, thus greatly increasing their survival probability. We also expect nitric acid and ammonia nucleation and rapid growth to be important in the relatively clean and cold upper free troposphere, where ammonia can be convected from the continental boundary layer and nitric acid is abundant from electrical storms.
New particle formation in the upper free troposphere is a major global source of cloud condensation nuclei (CCN)1,2,3,4. However, the precursor vapours that drive the process are not well understood. With experiments performed under upper tropospheric conditions in the CERN CLOUD chamber, we show that nitric acid, sulfuric acid and ammonia form particles synergistically, at rates that are orders of magnitude faster than those from any two of the three components. The importance of this mechanism depends on the availability of ammonia, which was previously thought to be efficiently scavenged by cloud droplets during convection. However, surprisingly high concentrations of ammonia and ammonium nitrate have recently been observed in the upper troposphere over the Asian monsoon region5,6. Once particles have formed, co-condensation of ammonia and abundant nitric acid alone is sufficient to drive rapid growth to CCN sizes with only trace sulfate. Moreover, our measurements show that these CCN are also highly efficient ice nucleating particles—comparable to desert dust. Our model simulations confirm that ammonia is efficiently convected aloft during the Asian monsoon, driving rapid, multi-acid HNO3–H2SO4–NH3 nucleation in the upper troposphere and producing ice nucleating particles that spread across the mid-latitude Northern Hemisphere.
Biogenic organic precursors play an important role in atmospheric new particle formation (NPF). One of the major precursor species is α-pinene, which upon oxidation can form a suite of products covering a wide range of volatilities. Highly oxygenated organic molecules (HOMs) comprise a fraction of the oxidation products formed. While it is known that HOMs contribute to secondary organic aerosol (SOA) formation, including NPF, they have not been well studied in newly formed particles due to their very low mass concentrations. Here we present gas- and particle-phase chemical composition data from experimental studies of α-pinene oxidation, including in the presence of isoprene, at temperatures (−50 and −30 ∘C) and relative humidities (20 % and 60 %) relevant in the upper free troposphere. The measurements took place at the CERN Cosmics Leaving Outdoor Droplets (CLOUD) chamber. The particle chemical composition was analyzed by a thermal desorption differential mobility analyzer (TD-DMA) coupled to a nitrate chemical ionization–atmospheric pressure interface–time-of-flight (CI-APi-TOF) mass spectrometer. CI-APi-TOF was used for particle- and gas-phase measurements, applying the same ionization and detection scheme. Our measurements revealed the presence of C8−10 monomers and C18−20 dimers as the major compounds in the particles (diameter up to ∼ 100 nm). Particularly, for the system with isoprene added, C5 (C5H10O5−7) and C15 compounds (C15H24O5−10) were detected. This observation is consistent with the previously observed formation of such compounds in the gas phase. However, although the C5 and C15 compounds do not easily nucleate, our measurements indicate that they can still contribute to the particle growth at free tropospheric conditions. For the experiments reported here, most likely isoprene oxidation products enhance the growth of particles larger than 15 nm. Additionally, we report on the nucleation rates measured at 1.7 nm (J1.7 nm) and compared with previous studies, we found lower J1.7 nm values, very likely due to the higher α-pinene and ozone mixing ratios used in the present study.
Biogenic organic precursors play an important role in atmospheric new particle formation (NPF). One of the major precursor species is α-pinene, which upon oxidation can form a suite of products covering a wide range of volatilities. Highly oxygenated organic molecules (HOMs) comprise a fraction of the oxidation products formed. While it is known that HOMs contribute to secondary organic aerosol (SOA) formation, including NPF, they have not been well studied in newly formed particles due to their very low mass concentrations. Here we present gas- and particle-phase chemical composition data from experimental studies of α-pinene oxidation, including in the presence of isoprene, at temperatures (−50 and −30 ∘C) and relative humidities (20 % and 60 %) relevant in the upper free troposphere. The measurements took place at the CERN Cosmics Leaving Outdoor Droplets (CLOUD) chamber. The particle chemical composition was analyzed by a thermal desorption differential mobility analyzer (TD-DMA) coupled to a nitrate chemical ionization–atmospheric pressure interface–time-of-flight (CI-APi-TOF) mass spectrometer. CI-APi-TOF was used for particle- and gas-phase measurements, applying the same ionization and detection scheme. Our measurements revealed the presence of C8−10 monomers and C18−20 dimers as the major compounds in the particles (diameter up to ∼ 100 nm). Particularly, for the system with isoprene added, C5 (C5H10O5−7) and C15 compounds (C15H24O5−10) were detected. This observation is consistent with the previously observed formation of such compounds in the gas phase. However, although the C5 and C15 compounds do not easily nucleate, our measurements indicate that they can still contribute to the particle growth at free tropospheric conditions. For the experiments reported here, most likely isoprene oxidation products enhance the growth of particles larger than 15 nm. Additionally, we report on the nucleation rates measured at 1.7 nm (J1.7 nm) and compared with previous studies, we found lower J1.7 nm values, very likely due to the higher α-pinene and ozone mixing ratios used in the present study.
Many different atmospheric, physical, and chemical processes are affected by ions. An important sink for atmospheric ions is the reaction and mutual neutralisation of a positive and negative ion, also called ion–ion recombination. While the value for the ion–ion recombination coefficient α is well-known for standard conditions (namely 1.7 × 10−6 cm3 s−1), it needs to be calculated for deviating temperature and pressure conditions, especially for applications at higher altitudes of the atmosphere. In this work, we review the history of theories and parameterisations of the ion–ion recombination coefficient, focussing on the temperature and pressure dependencies as well as the altitude range between 0 and 50 km. Commencing with theories based on J. J. Thomson's work, we describe important semi-empirical adjustments as well as field, model, and laboratory data sets, followed by short reviews of binary recombination theories, model simulations, and the application of ion–aerosol theories to ion–ion recombination. We present a comparison between theories, parameterisations, and field, model, and laboratory data sets to conclude favourable parameterisations. While many theories agree well with field data above an altitude of approximately 10 km, the nature of the recombination coefficient is still widely unknown between Earth's surface and an altitude of 10 km. According to the current state of knowledge, it appears reasonable to assume an almost constant value for the recombination coefficient for this region, while it is necessary to use values that are adjusted for pressure and temperature for altitudes above 10 km. Suitable parameterisations for different altitude ranges are presented and the need for future research, be it in the laboratory or by means of modelling, is identified.
Currently, the complete chemical characterization of nanoparticles (< 100 nm) represents an analytical challenge, since these particles are abundant in number but have negligible mass. Several methods for particle-phase characterization have been recently developed to better detect and infer more accurately the sources and fates of sub-100 nm particles, but a detailed comparison of different approaches is missing. Here we report on the chemical composition of secondary organic aerosol (SOA) nanoparticles from experimental studies of α-pinene ozonolysis at −50, −30, and −10 ∘C and intercompare the results measured by different techniques. The experiments were performed at the Cosmics Leaving OUtdoor Droplets (CLOUD) chamber at the European Organization for Nuclear Research (CERN). The chemical composition was measured simultaneously by four different techniques: (1) thermal desorption–differential mobility analyzer (TD–DMA) coupled to a NO chemical ionization–atmospheric-pressure-interface–time-of-flight (CI–APi–TOF) mass spectrometer, (2) filter inlet for gases and aerosols (FIGAERO) coupled to an I− high-resolution time-of-flight chemical ionization mass spectrometer (HRToF-CIMS), (3) extractive electrospray Na+ ionization time-of-flight mass spectrometer (EESI-TOF), and (4) offline analysis of filters (FILTER) using ultra-high-performance liquid chromatography (UHPLC) and heated electrospray ionization (HESI) coupled to an Orbitrap high-resolution mass spectrometer (HRMS). Intercomparison was performed by contrasting the observed chemical composition as a function of oxidation state and carbon number, by estimating the volatility and comparing the fraction of volatility classes, and by comparing the thermal desorption behavior (for the thermal desorption techniques: TD–DMA and FIGAERO) and performing positive matrix factorization (PMF) analysis for the thermograms. We found that the methods generally agree on the most important compounds that are found in the nanoparticles. However, they do see different parts of the organic spectrum. We suggest potential explanations for these differences: thermal decomposition, aging, sampling artifacts, etc. We applied PMF analysis and found insights of thermal decomposition in the TD–DMA and the FIGAERO.
Currently, the complete chemical characterization of nanoparticles (< 100 nm) represents an analytical challenge, since these particles are abundant in number but have negligible mass. Several methods for particle-phase characterization have been recently developed to better detect and infer more accurately the sources and fates of sub-100 nm particles, but a detailed comparison of different approaches is missing. Here we report on the chemical composition of secondary organic aerosol (SOA) nanoparticles from experimental studies of α-pinene ozonolysis at −50, −30, and −10 ∘C and intercompare the results measured by different techniques. The experiments were performed at the Cosmics Leaving OUtdoor Droplets (CLOUD) chamber at the European Organization for Nuclear Research (CERN). The chemical composition was measured simultaneously by four different techniques: (1) thermal desorption–differential mobility analyzer (TD–DMA) coupled to a NO chemical ionization–atmospheric-pressure-interface–time-of-flight (CI–APi–TOF) mass spectrometer, (2) filter inlet for gases and aerosols (FIGAERO) coupled to an I− high-resolution time-of-flight chemical ionization mass spectrometer (HRToF-CIMS), (3) extractive electrospray Na+ ionization time-of-flight mass spectrometer (EESI-TOF), and (4) offline analysis of filters (FILTER) using ultra-high-performance liquid chromatography (UHPLC) and heated electrospray ionization (HESI) coupled to an Orbitrap high-resolution mass spectrometer (HRMS). Intercomparison was performed by contrasting the observed chemical composition as a function of oxidation state and carbon number, by estimating the volatility and comparing the fraction of volatility classes, and by comparing the thermal desorption behavior (for the thermal desorption techniques: TD–DMA and FIGAERO) and performing positive matrix factorization (PMF) analysis for the thermograms. We found that the methods generally agree on the most important compounds that are found in the nanoparticles. However, they do see different parts of the organic spectrum. We suggest potential explanations for these differences: thermal decomposition, aging, sampling artifacts, etc. We applied PMF analysis and found insights of thermal decomposition in the TD–DMA and the FIGAERO.
Many different atmospheric, physical and chemical processes are affected by ions. An important sink for atmospheric ions is the reaction and mutual neutralisation of a positive and negative ion, also called ion-ion recombination. While the value for the ion-ion recombination coefficient α is well-known for standard conditions (namely 1.7 · 10–6 cm3 s–1), it needs to be calculated for deviating temperature and pressure conditions, especially for applications at higher altitudes of the atmosphere. In this work, we review the history of theories and parameterisations of the ion-ion recombination coefficient, focussing on the temperature and pressure dependencies and on the altitude range of between 0 and 20 km. Commencing with theories based on J. J. Thomson’s work, we describe important semi-empirical adjustments as well as field, model and laboratory data sets, followed by a short review of physical theories that take the microscopic processes during recombination into account, including a molecular dynamics approach. We present a comparison between all theories, parameterisations, field, model, and laboratory data sets to conclude on a favourable parameterisation. While many theories agree well with field data above approximately 10 km altitude, the nature of the recombination coefficient is still widely unknown between Earth’s surface and an altitude of 10 km. According to the current state of knowledge, it appears most reasonable to assume a constant value for the recombination coefficient for this region, while we recommend using a parameterisation for altitudes above 10 km. Overall, the parameterisation of Brasseur and Chatel (1983) shows the most convincing results. The need for future research, be it in the laboratory or by means of modelling, is identified.