Refine
Document Type
- Article (13)
- Doctoral Thesis (1)
Has Fulltext
- yes (14)
Is part of the Bibliography
- no (14)
Keywords
- neuropathic pain (3)
- pain (3)
- G2A (2)
- GPCR (2)
- Animal disease models (1)
- CYP450 (1)
- EET (1)
- GPR4 (1)
- Glaucoma (1)
- HODE (1)
Oxaliplatin is a third-generation platinum-based anticancer drug that is widely used as first-line treatment for colorectal carcinoma. Patients treated with oxaliplatin develop an acute peripheral pain several hours after treatment, mostly characterized by cold allodynia as well as a long-term chronic neuropathy. These two phenomena seem to be causally connected. However, the underlying mechanisms that trigger the acute peripheral pain are still poorly understood. Here we show that the activity of the transient receptor potential melastatin 8 (TRPM8) channel but not the activity of any other member of the TRP channel family is transiently increased 1 h after oxaliplatin treatment and decreased 24 h after oxaliplatin treatment. Mechanistically, this is connected with activation of the phospholipase C (PLC) pathway and depletion of phosphatidylinositol 4,5-bisphosphate (PIP2) after oxaliplatin treatment. Inhibition of the PLC pathway can reverse the decreased TRPM8 activity as well as the decreased PIP2-concentrations after oxaliplatin treatment. In summary, these results point out transient changes in TRPM8 activity early after oxaliplatin treatment and a later occurring TRPM8 channel desensitization in primary sensory neurons. These mechanisms may explain the transient cold allodynia after oxaliplatin treatment and highlight an important role of TRPM8 in oxaliplatin-induced acute and neuropathic pain.
The G2A receptor (GPR132) contributes to oxaliplatin-induced mechanical pain hypersensitivity
(2017)
Chemotherapy-induced peripheral neuropathic pain (CIPN) is a common and severe debilitating side effect of many widely used cytostatics. However, there is no approved pharmacological treatment for CIPN available. Among other substances, oxaliplatin causes CIPN in up to 80% of treated patients. Here, we report the involvement of the G-protein coupled receptor G2A (GPR132) in oxaliplatin-induced neuropathic pain in mice. We found that mice deficient in the G2A-receptor show decreased mechanical hypersensitivity after oxaliplatin treatment. Lipid ligands of G2A were found in increased concentrations in the sciatic nerve and dorsal root ganglia of oxaliplatin treated mice. Calcium imaging and patch-clamp experiments show that G2A activation sensitizes the ligand-gated ion channel TRPV1 in sensory neurons via activation of PKC. Based on these findings, we conclude that targeting G2A may be a promising approach to reduce oxaliplatin-induced TRPV1-sensitization and the hyperexcitability of sensory neurons and thereby to reduce pain in patients treated with this chemotherapeutic agent.
The group of proton-sensing G-protein coupled receptors (GPCRs) consists of the four receptors GPR4, TDAG8 (GPR65), OGR1 (GPR68), and G2A (GPR132). These receptors are cellular sensors of acidification, a property that has been attributed to the presence of crucial histidine residues. However, the pH detection varies considerably among the group of proton-sensing GPCRs and ranges from pH of 5.5 to 7.8. While the proton-sensing GPCRs were initially considered to detect acidic cellular environments in the context of inflammation, recent observations have expanded our knowledge about their physiological and pathophysiological functions and many additional individual and unique features have been discovered that suggest a more differentiated role of these receptors in health and disease. It is known that all four receptors contribute to different aspects of tumor biology, cardiovascular physiology, and asthma. However, apart from their overlapping functions, they seem to have individual properties, and recent publications identify potential roles of individual GPCRs in mechanosensation, intestinal inflammation, oncoimmunological interactions, hematopoiesis, as well as inflammatory and neuropathic pain. Here, we put together the knowledge about the biological functions and structural features of the four proton-sensing GPCRs and discuss the biological role of each of the four receptors individually. We explore all currently known pharmacological modulators of the four receptors and highlight potential use. Finally, we point out knowledge gaps in the biological and pharmacological context of proton-sensing GPCRs that should be addressed by future studies.
Trehalose, a sugar from fungi, mimics starvation due to a block of glucose transport and induces Transcription Factor EB- mediated autophagy, likely supported by the upregulation of progranulin. The pro-autophagy effects help to remove pathological proteins and thereby prevent neurodegenerative diseases such as Alzheimer’s disease. Enhancing autophagy also contributes to the resolution of neuropathic pain in mice. Therefore, we here assessed the effects of continuous trehalose administration via drinking water using the mouse Spared Nerve Injury model of neuropathic pain. Trehalose had no effect on drinking, feeding, voluntary wheel running, motor coordination, locomotion, and open field, elevated plus maze, and Barnes Maze behavior, showing that it was well tolerated. However, trehalose reduced nerve injury-evoked nociceptive mechanical and thermal hypersensitivity as compared to vehicle. Trehalose had no effect on calcium currents in primary somatosensory neurons, pointing to central mechanisms of the antinociceptive effects. In IntelliCages, trehalose-treated mice showed reduced activity, in particular, a low frequency of nosepokes, which was associated with a reduced proportion of correct trials and flat learning curves in place preference learning tasks. Mice failed to switch corner preferences and stuck to spontaneously preferred corners. The behavior in IntelliCages is suggestive of sedative effects as a 'side effect' of a continuous protracted trehalose treatment, leading to impairment of learning flexibility. Hence, trehalose diet supplements might reduce chronic pain but likely at the expense of alertness.
Around 20% of the American population have chronic pain and estimates in other Western countries report similar numbers. This represents a major challenge for global health care systems. Additional problems for the treatment of chronic and persistent pain are the comparably low efficacy of existing therapies, the failure to translate effects observed in preclinical pain models to human patients and related setbacks in clinical trials from previous attempts to develop novel analgesics. Drug repurposing offers an alternative approach to identify novel analgesics as it can bypass various steps of classical drug development. In recent years, several approved drugs were attributed analgesic properties. Here, we review available data and discuss recent findings suggesting that the approved drugs minocycline, fingolimod, pioglitazone, nilotinib, telmisartan, and others, which were originally developed for the treatment of different pathologies, can have analgesic, antihyperalgesic, or neuroprotective effects in preclinical and clinical models of inflammatory or neuropathic pain. For our analysis, we subdivide the drugs into substances that can target neuroinflammation or substances that can act on peripheral sensory neurons, and highlight the proposed mechanisms. Finally, we discuss the merits and challenges of drug repurposing for the development of novel analgesics.
Im Rahmen dieser Arbeit wurden Epoxyeicosatriensäuren (EETs) hinsichtlich ihrer Beteiligung an der Verarbeitung nozizeptiver Information untersucht. Im ersten Teil der Arbeit lag der Fokus auf der löslichen Epoxidhydrolase (sEH) und der drei von ihr metabolisierten EETs, 8,9-, 11,12-, und 14,15-EET. Dabei stellte sich heraus, dass sEH-defiziente Mäuse eine verlängerte mechanische Hyperalgesie bei zymosan-induziertem pathophysiologischen Nozizeptorschmerz aufwiesen. Anhand von Lipidmessungen mittels LC-MS/MS konnte gezeigt werden, dass zum Zeitpunkt des stärksten Schmerzempfindens (48 Stunden nach Zymosan-Injektion) vorwiegend 8,9-EET in den Dorsalwurzelganglien der sEH-defizienten Mäuse akkumuliert. Zudem wurde anhand von Calcium-Imaging-Versuchen gezeigt, dass 8,9-EET Calcium-Einströme in primär afferenten Neuronen von Wildtyp-Mäusen hervorruft, und eine Stimulation von Ischiasnerven mit 8,9-EET zu erhöhter Freisetzung des pronozizeptiven Peptids CGRP führt. Schließlich konnte gezeigt werden, dass Wildtyp-Mäuse nach intraplantarer 8,9-EET-Injektion eine geringere mechanische Schmerzschwelle aufweisen. Die Resultate dieses Teils der Arbeit weisen darauf hin, dass die lösliche Epoxidhydrolase (sEH) eine wichtige Rolle in der späten Phase des pathophy-siologischen Nozizeptorschmerzes spielt, indem sie 8,9-EET zu seinem bioinaktiven Metaboliten 8,9-DHET umsetzt. Im zweiten Teil der Arbeit wurde 5,6-EET gesondert untersucht, da es nicht durch sEH metabolisiert wird. Dabei wurde beobachtet, dass 5,6-EET bei akutem Schmerz in DRGs freigesetzt wird. In Calcium-Imaging-Versuchen mit DRG-Neuronen aus Wildtyp- TRPV4- und TRPA1-defizienten Mäusen sowie transfizierten Zelllinien zeigte sich, dass schon geringe Konzentrationen an 5,6-EET den TRPA1- (transient receptor potetntial ankyrin 1-) Kanal aktivieren (EC50 193 nM) und den TRPV1-Kanal sensibilisieren können. Auch die CGRP-Freisetzung am Ischiasnerv ist nach 5,6-EET-Stimulation signifikant erhöht. Zudem konnte beobachtet werden dass eine periphere Injektion von 5,6-EET zu akuter mechanischer Hyperalgesie in Wildtyp-, aber nicht in TRPA1-defizienten Mäusen führt. Die Resultate dieses Teils der Arbeit weisen 5,6-EET als bisher potentesten endogenen TRPA1-Aktivator aus, und implizieren eine wichtige Rolle dieses Lipids beim Übergang von physiologischem zu pathophysiologischem Nozizeptorschmerz und zu neruogener Inflammation. Darüber hinaus leisten die Resultate einen Beitrag zum grundlegenden Verständnis endogener TRP-Kanal-Aktivatoren bei der Schmerzwahrnehmung.
Background: Transient receptor potential cation channel subfamily V member 1 (TRPV1) are sensitive to heat, capsaicin, pungent chemicals and other noxious stimuli. They play important roles in the pain pathway where in concert with proinflammatory factors such as leukotrienes they mediate sensitization and hyperalgesia. TRPV1 is the target of several novel analgesics drugs under development and therefore, TRPV1 genetic variants might represent promising candidates for pharmacogenetic modulators of drug effects.
Methods: A next-generation sequencing (NGS) panel was created for the human TRPV1 gene and in addition, for the leukotriene receptors BLT1 and BLT2 recently described to modulate TRPV1 mediated sensitisation processes rendering the coding genes LTB4R and LTB4R2 important co-players in pharmacogenetic approaches involving TRPV1. The NGS workflow was based on a custom AmpliSeq™ panel and designed for sequencing of human genes on an Ion PGM™ Sequencer. A cohort of 80 healthy subjects of Western European descent was screened to evaluate and validate the detection of exomic sequences of the coding genes with 25 base pair exon padding.
Results: The amplicons covered approximately 97% of the target sequence. A median of 2.81 x 10 6 reads per run was obtained. This identified approximately 140 chromosome loci where nucleotides deviated from the reference sequence GRCh37 hg19 comprising the three genes TRPV1, LTB4R and LTB4R2. Correspondence between NGS and Sanger derived nucleotide sequences was 100%.
Conclusions: Results suggested that the NGS approach based on AmpliSeq™ libraries and Ion Personal Genome Machine (PGM) sequencing is a highly efficient mutation detection method. It is suitable for large-scale sequencing of TRPV1 and functionally related genes. The method adds a large amount of genetic information as a basis for complete analysis of TRPV1 ion channel genetics and its functional consequences.
Cytochrome P450 (CYP) signalling pathway has been shown to play a vital role in the vasoreactivity of wild type mouse ophthalmic artery. In this study, we determined the expression, vascular responses and potential mechanisms of the CYP-derived arachidonic acid metabolites. The expression of murine CYP (Cyp2c44) and soluble epoxide hydrolase (sEH) in the wild type ophthalmic artery was determined with immunofluorescence, which showed predominant expression of Cyp2c44 in the vascular smooth muscle cells (VSMC), while sEH was found mainly in the endothelium of the wild type ophthalmic artery. Artery of Cyp2c44−/− and sEH−/− mice were used as negative controls. Targeted mass spectrometry-based lipidomics analysis of endogenous epoxide and diols of the wild type artery detected only 14, 15-EET. Vasorelaxant responses of isolated vessels in response to selective pharmacological blockers and agonist were analysed ex vivo. Direct antagonism of epoxyeicosatrienoic acids (EETs) with a selective inhibitor caused partial vasodilation, suggesting that EETs may behave as vasoconstrictors. Exogenous administration of synthetic EET regioisomers significantly constricted the vessels in a concentration-dependent manner, with the strongest responses elicited by 11, 12- and 14, 15-EETs. Our results provide the first experimental evidence that Cyp2c44-derived EETs in the VSMC mediate vasoconstriction of the ophthalmic artery.
Chemotherapy, nerve injuries, or diseases like multiple sclerosis can cause pathophysiological processes of persistent and neuropathic pain. Thereby, the activation threshold of ion channels is reduced in peripheral sensory neurons to normally noxious stimuli like heat, cold, acid, or mechanical due to sensitization processes. This leads to enhanced neuronal activity, which can result in mechanical allodynia, cold allodynia, thermal hyperalgesia, spontaneous pain, and may initiate persistent and neuropathic pain. The treatment options for persistent and neuropathic pain patients are limited; for about 50% of them, current medication is not efficient due to severe side effects or low response to the treatment. Therefore, it is of special interest to find additional treatment strategies. One approach is the control of neuronal sensitization processes. Herein, signaling lipids are crucial mediators and play an important role during the onset and maintenance of pain. As preclinical studies demonstrate, lipids may act as endogenous ligands or may sensitize transient receptor potential (TRP)-channels. Likewise, they can cause enhanced activity of sensory neurons by mechanisms involving G-protein coupled receptors and activation of intracellular protein kinases. In this regard, oxidized metabolites of the essential fatty acid linoleic acid, 9- and 13-hydroxyoctadecadienoic acid (HODE), their dihydroxy-metabolites (DiHOMEs), as well as epoxides of linoleic acid (EpOMEs) and of arachidonic acid (EETs), as well as lysophospholipids, sphingolipids, and specialized pro-resolving mediators (SPMs) have been reported to play distinct roles in pain transmission or inhibition. Here, we discuss the underlying molecular mechanisms of the oxidized linoleic acid metabolites and eicosanoids. Furthermore, we critically evaluate their role as potential targets for the development of novel analgesics and for the treatment of persistent or neuropathic pain.
Ultraviolet-B (UVB)-induced inflammation produces a dose-dependent mechanical and thermal hyperalgesia in both humans and rats, most likely via inflammatory mediators acting at the site of injury. Previous work has shown that the gene expression of cytokines and chemokines is positively correlated between species and that these factors can contribute to UVB-induced pain. In order to investigate other potential pain mediators in this model we used RNA-seq to perform genome-wide transcriptional profiling in both human and rat skin at the peak of hyperalgesia. In addition we have also measured transcriptional changes in the L4 and L5 DRG of the rat model. Our data show that UVB irradiation produces a large number of transcriptional changes in the skin: 2186 and 3888 genes are significantly dysregulated in human and rat skin, respectively. The most highly up-regulated genes in human skin feature those encoding cytokines (IL6 and IL24), chemokines (CCL3, CCL20, CXCL1, CXCL2, CXCL3 and CXCL5), the prostanoid synthesising enzyme COX-2 and members of the keratin gene family. Overall there was a strong positive and significant correlation in gene expression between the human and rat (R = 0.8022). In contrast to the skin, only 39 genes were significantly dysregulated in the rat L4 and L5 DRGs, the majority of which had small fold change values. Amongst the most up-regulated genes in DRG were REG3B, CCL2 and VGF. Overall, our data shows that numerous genes were up-regulated in UVB irradiated skin at the peak of hyperalgesia in both human and rats. Many of the top up-regulated genes were cytokines and chemokines, highlighting again their potential as pain mediators. However many other genes were also up-regulated and might play a role in UVB-induced hyperalgesia. In addition, the strong gene expression correlation between species re-emphasises the value of the UVB model as translational tool to study inflammatory pain.