Refine
Year of publication
Has Fulltext
- yes (44)
Is part of the Bibliography
- no (44)
Keywords
- host specificity (4)
- Downy mildew (3)
- Oomycetes (3)
- Phylogeny (3)
- evolution (3)
- phylogeny (3)
- taxonomy (3)
- Basidiomycetes (2)
- Comparative genomics (2)
- European beech (2)
Natural products (NPs) from microorganisms have been important sources for discovering new therapeutic and chemical entities. While their corresponding biosynthetic gene clusters (BGCs) can be easily identified by gene-sequence-similarity-based bioinformatics strategies, the actual access to these NPs for structure elucidation and bioactivity testing remains difficult. Deletion of the gene encoding the RNA chaperone, Hfq, results in strains losing the production of most NPs. By exchanging the native promoter of a desired BGC against an inducible promoter in Δhfq mutants, almost exclusive production of the corresponding NP from the targeted BGC in Photorhabdus, Xenorhabdus and Pseudomonas was observed including the production of several new NPs derived from previously uncharacterized non-ribosomal peptide synthetases (NRPS). This easyPACId approach (easy Promoter Activated Compound Identification) facilitates NP identification due to low interference from other NPs. Moreover, it allows direct bioactivity testing of supernatants containing secreted NPs, without laborious purification.
Background: Pythium ultimum (P. ultimum) is a ubiquitous oomycete plant pathogen responsible for a variety of diseases on a broad range of crop and ornamental species. Results: The P. ultimum genome (42.8 Mb) encodes 15,290 genes and has extensive sequence similarity and synteny with related Phytophthora species, including the potato blight pathogen Phytophthora infestans. Whole transcriptome sequencing revealed expression of 86% of genes, with detectable differential expression of suites of genes under abiotic stress and in the presence of a host. The predicted proteome includes a large repertoire of proteins involved in plant pathogen interactions although surprisingly, the P. ultimum genome does not encode any classical RXLR effectors and relatively few Crinkler genes in comparison to related phytopathogenic oomycetes. A lower number of enzymes involved in carbohydrate metabolism were present compared to Phytophthora species, with the notable absence of cutinases, suggesting a significant difference in virulence mechanisms between P. ultimum and more host specific oomycete species. Although we observed a high degree of orthology with Phytophthora genomes, there were novel features of the P. ultimum proteome including an expansion of genes involved in proteolysis and genes unique to Pythium. We identified a small gene family of cadherins, proteins involved in cell adhesion, the first report in a genome outside the metazoans. Conclusions: Access to the P. ultimum genome has revealed not only core pathogenic mechanisms within the oomycetes but also lineage specific genes associated with the alternative virulence and lifestyles found within the pythiaceous lineages compared to the Peronosporaceae.
Oomyceten – schön, nützlich und gefährlich : sie sind überall zu finden und dennoch kaum bekannt
(2010)
Auf Pflanzen sind sie klein, unscheinbar und leicht verwechselbar. Den Betrachter betören sie beim Blick ins Mikroskop durch wunderschön geformte Sporenträger. Doch Oomyceten, die lange Zeit mit Pilzen verwechselt wurden, können als Pflanzenschädlinge beträchtlichen landwirtschaftlichen Schaden anrichten. Die einzelnen Arten zu unterscheiden und ihre Wirtspflanzen zu kennen, ist eine Voraussetzung dafür, ihre Verbreitung zu kontrollieren. Denn auch in Europa könnten exotische Arten aufgrund der Erderwärmung heimisch werden – mit erwünschten und unerwünschten Folgen.
Peronospora aquilegiicola is a destructive pathogen of columbines and has wiped out most Aquilegia cultivars in several private and public gardens throughout Britain. The pathogen, which is native to East Asia was noticed in England and Wales in 2013 and quickly spread through the country, probably by infested plants or seeds. To our knowledge, the pathogen has so far not been reported from other parts of Europe. Here, we report the emergence of the pathogen in the northwest of Germany, based on morphological and phylogenetic evidence. As the pathogen was found in a garden in which no new columbines had been planted recently, we assume that the pathogen has already spread from its original point of introduction in Germany. This calls for an increased attention to the further spread of the pathogen and the eradication of infection spots to avoid the spread to naturally occurring columbines in Germany and to prevent another downy mildew from becoming a global threat, like Peronospora belbahrii and Plasmopara destructor, the downy mildews of basil and balsamines, respectively.
Peronospora salviae‐officinalis, the causal agent of downy mildew on common sage, is an obligate biotrophic pathogen. It grows in the intercellular spaces of the leaf tissue of sage and forms intracellular haustoria to interface with host cells. Although P. salviae‐officinalis was described as a species of its own 10 years ago, the infection process remains obscure. To address this, a histological study of various infection events, from the adhesion of conidia on the leaf surface to de novo sporulation is presented here. As histological studies of oomycetes are challenging due to the lack of chitin in their cell wall, we also present an improved method for staining downy mildews for confocal laser scanning microscopy as well as evaluating the potential of autofluorescence of fixed nonstained samples. For staining, a 1:1 mixture of aniline blue and trypan blue was found most suitable and was used for staining of oomycete and plant structures, allowing discrimination between them as well as the visualization of plant immune responses. The method was also used to examine samples of Peronospora lamii on Lamium purpureum and Peronospora belbahrii on Ocimum basilicum, demonstrating the potential of the presented histological method for studying the infection processes of downy mildews in general.
Olpidiopsis is a genus of obligate holocarpic endobiotic oomycetes. Most of the species classified in the genus are known only from their morphology and life cycle, and a few have been examined for their ultrastructure or molecular phylogeny. However, the taxonomic placement of all sequenced species is provisional, as no sequence data are available for the type species, O. saprolegniae, to consolidate the taxonomy of species currently placed in the genus. Thus, efforts were undertaken to isolate O. saprolegniae from its type host, Saprolegnia parasitica and to infer its phylogenetic placement based on 18S rDNA sequences. As most species of Olpidiopsis for which sequence data are available are from rhodophyte hosts, we have also isolated the type species of the rhodophyte-parasitic genus Pontisma, P. lagenidioides and obtained partial 18S rDNA sequences. Phylogenetic reconstructions in the current study revealed that O. saprolegniae from Saprolegnia parasitica forms a monophyletic group with a morphologically similar isolate from S. ferax, and a morphologically and phylogenetically more divergent species from S. terrestris. However, they were widely separated from a monophyletic, yet unsupported clade containing P. lagenidioides and red algal parasites previously classified in Olpidiopsis. Consequently, all holocarpic parasites in red algae should be considered to be members of the genus Pontisma as previously suggested by some researchers. In addition, a new species of Olpidiopsis, O. parthenogenetica is introduced to accommodate the pathogen of S. terrestris.
Holocarpic oomycetes are poorly known but widespread parasites in freshwater and marine ecosystems. Most of the holocarpic species seem to belong to clades that diverge before the two crown lineages of the oomycetes, the Saprolegniomycetes and the Peronosporomycetes. Recently, the genus Miracula was described to accommodate Miracula helgolandica, a holocarpic parasitoid of Pseudo-nitzschia diatoms, which received varying support for its placement as the earliest-diverging oomycete lineage. In the same phylogenetic reconstruction, Miracula helgolandica was grouped with some somewhat divergent sequences derived from environmental sequencing, indicating that Miracula would not remain monotypic. Here, a second species of Miracula is reported, which was found as a parasitoid in the limnic centric diatom Pleurosira leavis. Its life-cycle stages are described and depicted in this study and its phylogenetic placement in the genus Miracula revealed. As a consequence, the newly discovered species is introduced as Miracula moenusica.
The oomycete genus Ectrogella currently comprises a rather heterogeneous group of obligate endoparasitoids, mostly of diatoms and algae. Despite their widespread occurrence, little is known regarding the phylogenetic affinities of these bizarre organisms. Traditionally, the genus was included within the Saprolegniales, based on zoospore diplanetism and a saprolegnia/achlya-like zoospore discharge. The genus has undergone multiple re-definitions in the past, and has often been used largely indiscriminately for oomycetes forming sausage-like thalli in diatoms. While the phylogenetic affinity of the polyphyletic genus Olpidiopsis has recently been partially resolved, taxonomic placement of the genus Ectrogella remained unresolved, as no sequence data were available for species of this genus. In this study, we report the phylogenetic placement of Ectrogella bacillariacearum infecting the freshwater diatom Nitzschia sigmoidea. The phylogenetic reconstruction shows that Ectrogella bacillariacearum is grouped among the early diverging lineages of the Saprolegniomycetes with high support, and is unrelated to the monophyletic diatom-infecting olpidiopsis-like species. As these species are neither related to Ectrogella, nor to the early diverging lineages of Olpidiopsis s. str. and Miracula, they are placed in a new genus, Diatomophthora, in the present study.
Diatoms are thought to provide about 40% of total global photosynthesis and diatoms of the genus Coscinodiscus are an important, sometimes dominant, cosmopolitan component of the marine diatom community. The oomycete parasitoid Lagenisma coscinodisci is widespread in the northern hemisphere on its hosts in the genus Coscinodiscus. Because of its potential ecological importance, it would be a suitable pathogen model to investigate plankton/parasite interactions, but the species cannot be cultivated on media without its host, so far. Thus, it was the aim of this study to explore the potential of dual culture of host and pathogen in the laboratory and to optimise cultivation to ensure a long-term cultivation of the pathogen. Here, we report successful cultivation of a single spore strain of L. coscinodisci (Isla), on several Coscinodiscus species and strains, as well as the establishment of a cultivation routine with Coscinodiscus granii (CGS1 and CG36), which enabled us to maintain the single spore strain for more than 3 years in 6 cm Petri dishes and 10 ml tissue culture flasks. This opens up the opportunity to study the processes and mechanism in plankton/parasitoid interactions under controlled conditions.
Similar to chloroplast loci, mitochondrial markers are frequently used for genotyping, phylogenetic studies, and population genetics, as they are easily amplified due to their multiple copies per cell. In a recent study, it was revealed that the chloroplast offers little variation for this purpose in central European populations of beech. Thus, it was the aim of this study to elucidate, if mitochondrial sequences might offer an alternative, or whether they are similarly conserved in central Europe. For this purpose, a circular mitochondrial genome sequence from the more than 300-year-old beech reference individual Bhaga from the German National Park Kellerwald-Edersee was assembled using long and short reads and compared to an individual from the Jamy Nature Reserve in Poland and a recently published mitochondrial genome from eastern Germany. The mitochondrial genome of Bhaga was 504,730 bp, while the mitochondrial genomes of the other two individuals were 15 bases shorter, due to seven indel locations, with four having more bases in Bhaga and three locations having one base less in Bhaga. In addition, 19 SNP locations were found, none of which were inside genes. In these SNP locations, 17 bases were different in Bhaga, as compared to the other two genomes, while 2 SNP locations had the same base in Bhaga and the Polish individual. While these figures are slightly higher than for the chloroplast genome, the comparison confirms the low degree of genetic divergence in organelle DNA of beech in central Europe, suggesting the colonisation from a common gene pool after the Weichsel Glaciation. The mitochondrial genome might have limited use for population studies in central Europe, but once mitochondrial genomes from glacial refugia become available, it might be suitable to pinpoint the origin of migration for the re-colonising beech population.