Refine
Year of publication
Document Type
- Preprint (104)
- Article (71)
- Conference Proceeding (15)
- Contribution to a Periodical (1)
- Review (1)
Has Fulltext
- yes (192)
Is part of the Bibliography
- no (192)
Keywords
- Kollisionen schwerer Ionen (16)
- heavy ion collisions (14)
- UrQMD (6)
- QGP (5)
- Quark-Gluon-Plasma (5)
- Quark Gluon Plasma (4)
- Drell-Yan (3)
- Hadron (3)
- Heavy-ion collisions (3)
- MEMOs (3)
Institute
Relying on the existing estimates for the production cross sections of mini black holes in models with large extra dimensions, we review strategies for identifying those objects at collider experiments. We further consider a possible stable final state of such black holes and discuss their characteristic signatures. Keywords: Black holes
A mechanism for locally density-dependent dynamic parton rearrangement and fusion has been implemented into the Ultrarelativistic Quantum Molecular Dynamics (UrQMD) approach. The same mechanism has been previously built in the Quark Gluon String Model (QGSM). This rearrangement and fusion approach based on parton coalescence ideas enables the description of multi-particle interactions, namely 3 -> 3 and 3 -> 2, between (pre)hadronic states in addition to standard binary interactions. The UrQMD model (v2.3) extended by these additional processes allows to investigate implications of multi-particle interactions on the reaction dynamics of ultrarelativistic heavy ion collisions. The mechanism, its implementation and first results of this investigation are presented and discussed.
We present the current status of hybrid approaches to describe heavy ion collisions and their future challenges and perspectives. First we present a hybrid model combining a Boltzmann transport model of hadronic degrees of freedom in the initial and final state with an optional hydrodynamic evolution during the dense and hot phase. Second, we present a recent extension of the hydrodynamical model to include fluctuations near the phase transition by coupling a chiral field to the hydrodynamic evolution.
We study various fluctuation and correlation signals of the deconfined state using a dynamical recombination approach (quark Molecular Dynamics, qMD). We analyse charge ratio fluctuations, charge transfer fluctuations and baryon-strangeness correlations as a function of the center of mass energy with a set of central Pb+Pb/Au+Au events from AGS energies on (Elab = 4 AGeV) up to the highest RHIC energy available (V sNN = 200 GeV) and as a function of time with a set of central Au+Au qMD events at V sNN = 200 GeV with and without applying our hadronization procedure. For all studied quantities, the results start from values compatible with a weakly coupled QGP in the early stage and end with values compatible with the hadronic result in the final state. We show that the loss of the signal occurs at the same time as hadronization and trace it back to the dynamical recombination process implemented in our model.
We analyze longitudinal pion spectra from E_lab= 2AGeV to sqrt s_NN=200GeV within Landau's hydrodynamical model. From the measured data on the widths of the pion rapidity spectra, we extract the sound velocity c_s in the early stage of the reactions. It is found that the sound velocity has a local minimum (indicating a softest point in the equation of state, EoS) at E_beam=30AGeV. This softening of the EoS is compatible with the assumption of the formation of a mixed phase at the onset of deconfinement.
Within the scenario of large extra dimensions, the Planck scale is lowered to values soon accessible. Among the predicted effects, the production of TeV mass black holes at the LHC is one of the most exciting possibilities. Though the final phases of the black hole’s evaporation are still unknown, the formation of a black hole remnant is a theoretically well motivated expectation. We analyze the observables emerging from a black hole evaporation with a remnant instead of a final decay. We show that the formation of a black hole remnant yields a signature which differs substantially from a final decay. We find the total transverse momentum of the black hole event to be significantly dominated by the presence of a remnant mass providing a strong experimental signature for black hole remnant formation.
String theory suggests the existence of a minimum length scale. An exciting quantum mechanical implication of this feature is a modification of the uncertainty principle. In contrast to the conventional approach, this generalised uncertainty principle does not allow to resolve space time distances below the Planck length. In models with extra dimensions, which are also motivated by string theory, the Planck scale can be lowered to values accessible by ultra high energetic cosmic rays (UHECRs) and by future colliders, i.e. M f approximately equal to 1 TeV. It is demonstrated that in this novel scenario, short distance physics below 1/M f is completely cloaked by the uncertainty principle. Therefore, Planckian effects could be the final physics discovery at future colliders and in UHECRs. As an application, we predict the modifications to the e+ e- to f+ f- cross-sections.
We study forward-backward charge fluctuations to probe the correlations among produced particles in ultra relativistic heavy ion collisions. We develop a model that describes the forward-backward dynamical fluctuations and apply it to interpret the recent PHOBOS data. Within the present model, the dynamical fluctuations are related to the particle production mechanism via cluster decay and to long range correlations between the forward and backward rapidity hemispheres. We argue that with a tight centrality cut, PHOBOS may see a strong decrease of the dynamical fluctuations. Within the present model, this deterioration of the correlation among the produced hadrons can be interpreted as a sign for the production of a hot, dense and interacting medium.
The influence of high and low energy hadronic models on lateral distribution functions of cosmic ray air showers for Auger energies is explored. A large variety of presently used high and low energy hadron interaction models are analysed and the resulting lateral distribution functions are compared. We show that the slope depends on both the high and low energy hadronic model used. The models are confronted with available hadron-nucleus data from accelerator experiments.