Refine
Language
- English (5)
Has Fulltext
- yes (5)
Is part of the Bibliography
- no (5)
Keywords
- Atherosclerosis (1)
- CVD biomarker (1)
- Cardiovascular diseases (1)
- Germany (1)
- Health risk analysis (1)
- Italy (1)
- Myocardial infarction (1)
- Prognostic markers (1)
- Stroke (1)
- Sweden (1)
Institute
Improved risk stratification in prevention by use of a panel of selected circulating microRNAs
(2017)
Risk stratification is crucial in prevention. Circulating microRNAs have been proposed as biomarkers in cardiovascular disease. Here a miR panel consisting of miRs related to different cardiovascular pathophysiologies, was evaluated to predict outcome in the context of prevention. MiR-34a, miR-223, miR-378, miR-499 and miR-133 were determined from peripheral blood by qPCR and combined to a risk panel. As derivation cohort, 178 individuals of the DETECT study, and as validation cohort, 129 individuals of the SHIP study were used in a case-control approach. Overall mortality and cardiovascular events were outcome measures. The Framingham Risk Score(FRS) and the SCORE system were applied as risk classification systems. The identified miR panel was significantly associated with mortality given by a hazard ratio(HR) of 3.0 (95% (CI): 1.09–8.43; p = 0.034) and of 2.9 (95% CI: 1.32–6.33; p = 0.008) after adjusting for the FRS in the derivation cohort. In a validation cohort the miR-panel had a HR of 1.31 (95% CI: 1.03–1.66; p = 0.03) and of 1.29 (95% CI: 1.02–1.64; p = 0.03) in a FRS/SCORE adjusted-model. A FRS/SCORE risk model was significantly improved to predict mortality by the miR panel with continuous net reclassification index of 0.42/0.49 (p = 0.014/0.005). The present miR panel of 5 circulating miRs is able to improve risk stratification in prevention with respect to mortality beyond the FRS or SCORE.
Background: The COVID-19 pandemic has spurred large-scale, inter-institutional research efforts. To enable these efforts, the German Corona Consensus (GECCO) dataset has been developed previously as a harmonized, interoperable collection of the most relevant data elements for COVID-19-related patient research. As GECCO has been developed as a compact core dataset across all medical fields, the focused research within particular medical domains demanded the definition of extension modules that include those data elements that are most relevant to the research performed in these individual medical specialties.
Main body: We created GECCO extension modules for the immunization, pediatrics, and cardiology domains with respect to the pandemic requests. The data elements included in each of these modules were selected in a consensus-based process by working groups of medical experts from the respective specialty to ensure that the contents are aligned with the research needs of the specialty. The selected data elements were mapped to international standardized vocabularies and data exchange specifications were created using HL7 FHIR profiles on the appropriate resources. All steps were performed in close interdisciplinary collaboration between medical domain experts, medical information scientists and FHIR developers. The profiles and vocabulary mappings were syntactically and semantically validated in a two-stage process. In that way, we defined dataset specifications for a total number of 23 (immunization), 59 (pediatrics), and 50 (cardiology) data elements that augment the GECCO core dataset. We created and published implementation guides and example implementations as well as dataset annotations for each extension module.
Conclusions: We here present extension modules for the GECCO core dataset that contain data elements most relevant to COVID-19-related patient research in immunization, pediatrics and cardiology. These extension modules were defined in an interdisciplinary, iterative, consensus-based approach that may serve as a blueprint for the development of further dataset definitions and GECCO extension modules. The here developed GECCO extension modules provide a standardized and harmonized definition of specialty-related datasets that can help to enable inter-institutional and cross-country COVID-19 research in these specialties.
Aims: Carotid intima media thickness (CIMT) predicts cardiovascular (CVD) events, but the predictive value of CIMT change is debated. We assessed the relation between CIMT change and events in individuals at high cardiovascular risk.
Methods and results: From 31 cohorts with two CIMT scans (total n = 89070) on average 3.6 years apart and clinical follow-up, subcohorts were drawn: (A) individuals with at least 3 cardiovascular risk factors without previous CVD events, (B) individuals with carotid plaques without previous CVD events, and (C) individuals with previous CVD events. Cox regression models were fit to estimate the hazard ratio (HR) of the combined endpoint (myocardial infarction, stroke or vascular death) per standard deviation (SD) of CIMT change, adjusted for CVD risk factors. These HRs were pooled across studies.
In groups A, B and C we observed 3483, 2845 and 1165 endpoint events, respectively. Average common CIMT was 0.79mm (SD 0.16mm), and annual common CIMT change was 0.01mm (SD 0.07mm), both in group A. The pooled HR per SD of annual common CIMT change (0.02 to 0.43mm) was 0.99 (95% confidence interval: 0.95–1.02) in group A, 0.98 (0.93–1.04) in group B, and 0.95 (0.89–1.04) in group C. The HR per SD of common CIMT (average of the first and the second CIMT scan, 0.09 to 0.75mm) was 1.15 (1.07–1.23) in group A, 1.13 (1.05–1.22) in group B, and 1.12 (1.05–1.20) in group C.
Conclusions: We confirm that common CIMT is associated with future CVD events in individuals at high risk. CIMT change does not relate to future event risk in high-risk individuals.
Aims: Averaged measurements, but not the progression based on multiple assessments of carotid intima-media thickness, (cIMT) are predictive of cardiovascular disease (CVD) events in individuals. Whether this is true for conventional risk factors is unclear.
Methods and results: An individual participant meta-analysis was used to associate the annualised progression of systolic blood pressure, total cholesterol, low-density lipoprotein cholesterol and high-density lipoprotein cholesterol with future cardiovascular disease risk in 13 prospective cohort studies of the PROG-IMT collaboration (n = 34,072). Follow-up data included information on a combined cardiovascular disease endpoint of myocardial infarction, stroke, or vascular death. In secondary analyses, annualised progression was replaced with average. Log hazard ratios per standard deviation difference were pooled across studies by a random effects meta-analysis. In primary analysis, the annualised progression of total cholesterol was marginally related to a higher cardiovascular disease risk (hazard ratio (HR) 1.04, 95% confidence interval (CI) 1.00 to 1.07). The annualised progression of systolic blood pressure, low-density lipoprotein cholesterol and high-density lipoprotein cholesterol was not associated with future cardiovascular disease risk. In secondary analysis, average systolic blood pressure (HR 1.20 95% CI 1.11 to 1.29) and low-density lipoprotein cholesterol (HR 1.09, 95% CI 1.02 to 1.16) were related to a greater, while high-density lipoprotein cholesterol (HR 0.92, 95% CI 0.88 to 0.97) was related to a lower risk of future cardiovascular disease events.
Conclusion: Averaged measurements of systolic blood pressure, low-density lipoprotein cholesterol and high-density lipoprotein cholesterol displayed significant linear relationships with the risk of future cardiovascular disease events. However, there was no clear association between the annualised progression of these conventional risk factors in individuals with the risk of future clinical endpoints.
Background The COVID-19 pandemic has spurred large-scale, inter-institutional research efforts. To enable these efforts, researchers must agree on dataset definitions that not only cover all elements relevant to the respective medical specialty but that are also syntactically and semantically interoperable. Following such an effort, the German Corona Consensus (GECCO) dataset has been developed previously as a harmonized, interoperable collection of the most relevant data elements for COVID-19-related patient research. As GECCO has been developed as a compact core dataset across all medical fields, the focused research within particular medical domains demands the definition of extension modules that include those data elements that are most relevant to the research performed in these individual medical specialties.
Objective To (i) specify a workflow for the development of interoperable dataset definitions that involves a close collaboration between medical experts and information scientists and to (ii) apply the workflow to develop dataset definitions that include data elements most relevant to COVID-19-related patient research in immunization, pediatrics, and cardiology.
Methods We developed a workflow to create dataset definitions that are (i) content-wise as relevant as possible to a specific field of study and (ii) universally usable across computer systems, institutions, and countries, i.e., interoperable. We then gathered medical experts from three specialties (immunization, pediatrics, and cardiology) to the select data elements most relevant to COVID-19-related patient research in the respective specialty. We mapped the data elements to international standardized vocabularies and created data exchange specifications using HL7 FHIR. All steps were performed in close interdisciplinary collaboration between medical domain experts and medical information scientists. The profiles and vocabulary mappings were syntactically and semantically validated in a two-stage process.
Results We created GECCO extension modules for the immunization, pediatrics, and cardiology domains with respect to the pandemic requests. The data elements included in each of these modules were selected according to the here developed consensus-based workflow by medical experts from the respective specialty to ensure that the contents are aligned with the respective research needs. We defined dataset specifications for a total number of 48 (immunization), 150 (pediatrics), and 52 (cardiology) data elements that complement the GECCO core dataset. We created and published implementation guides and example implementations as well as dataset annotations for each extension module.
Conclusions These here presented GECCO extension modules, which contain data elements most relevant to COVID-19-related patient research in immunization, pediatrics and cardiology, were defined in an interdisciplinary, iterative, consensus-based workflow that may serve as a blueprint for the development of further dataset definitions. The GECCO extension modules provide a standardized and harmonized definition of specialty-related datasets that can help to enable inter-institutional and cross-country COVID-19 research in these specialties.