Refine
Document Type
- Article (17)
Has Fulltext
- yes (17)
Is part of the Bibliography
- no (17)
Keywords
- elementary school (3)
- approximate number system (2)
- negative priming (2)
- selective attention (2)
- Arbeitsgedächtnis (1)
- Deutschland (1)
- Empirische Untersuchung (1)
- Grundschulalter (1)
- Grundschule (1)
- IQ–achievement discrepancy (1)
Institute
The neural correlates of developmental dyslexia have been investigated intensively over the last two decades and reliable evidence for a dysfunction of left-hemispheric reading systems in dyslexic readers has been found in functional neuroimaging studies. In addition, structural imaging studies using voxel-based morphometry (VBM) demonstrated grey matter reductions in dyslexics in several brain regions. To objectively assess the consistency of these findings, we performed activation likelihood estimation (ALE) meta-analysis on nine published VBM studies reporting 62 foci of grey matter reduction in dyslexic readers. We found six significant clusters of convergence in bilateral temporo-parietal and left occipito-temporal cortical regions and in the cerebellum bilaterally. To identify possible overlaps between structural and functional deviations in dyslexic readers, we conducted additional ALE meta-analyses of imaging studies reporting functional underactivations (125 foci from 24 studies) or overactivations (95 foci from 11 studies ) in dyslexics. Subsequent conjunction analyses revealed overlaps between the results of the VBM meta-analysis and the meta-analysis of functional underactivations in the fusiform and supramarginal gyri of the left hemisphere. An overlap between VBM results and the meta-analysis of functional overactivations was found in the left cerebellum. The results of our study provide evidence for consistent grey matter variations bilaterally in the dyslexic brain and substantial overlap of these structural variations with functional abnormalities in left hemispheric regions.
In the course of elementary school children start to develop an academic self-concept reflecting their motivation, thoughts, and feelings about a specific domain. For the domain of mathematics, gender differences can emerge which are characterized by a less pronounced math self-concept for girls. However, studies are rather sparse regarding the early years of elementary school education, hence, the point in time when such gender differences emerge yet remains a matter of debate. In our study, we found that the math self-concept of elementary school children (n = 81) declined from first to second grade. While no differences in math achievement were observed between girls and boys, it became apparent that girls’ math self-concept was already less pronounced than the math self-concept of boys in the first years of elementary school. Our findings emphasize the importance of considering such gender differences even at the beginning of school education.
As demonstrated by the Overlapping Waves Model (Siegler, 1996), children’s strategy use in arithmetic tasks is variable, adaptive, and changes gradually with age and experience. In this study, first grade elementary school children (n = 73), who scored high, middle, or low in a standardized scholastic mathematic achievement test, were confronted with different arithmetic tasks (simple addition, e.g., 3 + 2, simple subtraction, e.g., 7 – 2, and more advanced addition, e.g., 7 + 9) to evoke different calculation strategies. Video analysis and children’s self-report were used to identify individual strategy behavior. In accordance with the Overlapping Waves Model, children in all achievement groups showed variable and multiple strategy usage and adapted their behavior to the tasks of the different categories. We demonstrated that not only low achievers differed from normal achievers but also that high achievers exhibited a unique pattern of strategy behavior in early mathematics.
Children with reading and/or spelling disorders have increased rates of behavioral and emotional problems and combinations of these. Some studies also find increased rates of attention-deficit/hyperactivity disorder (ADHD), conduct disorder, anxiety disorder, and depression. However, the comorbidities of, e.g., arithmetic disorders with ADHD, anxiety disorder, and depression have been addressed only rarely. The current study explored the probability of children with specific learning disorders (SLD) in reading, spelling, and/or arithmetic to also have anxiety disorder, depression, ADHD, and/or conduct disorder. The sample consisted of 3,014 German children from grades 3 and 4 (mean age 9;9 years) who completed tests assessing reading, spelling as well as arithmetic achievement and intelligence via a web-based application. Psychopathology was assessed using questionnaires filled in by the parents. In children with a SLD we found high rates of anxiety disorder (21%), depression (28%), ADHD (28%), and conduct disorder (22%). Children with SLD in multiple learning domains had a higher risk for psychopathology and had a broader spectrum of psychopathology than children with an isolated SLD. The results highlight the importance of screening for and diagnosing psychiatric comorbidities in children with SLD.
Human beings are supposed to possess an approximate number system (ANS) dedicated to extracting and representing approximate numerical magnitude information as well as an object tracking system (OTS) for the rapid and accurate enumeration of small sets. It is assumed that the OTS and the ANS independently contribute to the acquisition of more elaborate numerical concepts. Chinese children have been shown to exhibit more elaborate numerical concepts than their non-Chinese peers, but it is still an open question whether similar cross-national differences exist with regard to the underlying systems, namely the ANS and the OTS. In the present study, we investigated this question by comparing Chinese and German preschool children with regard to their performance in a non-symbolic numerical magnitude comparison task (assessing the ANS) and in an enumeration task (assessing the OTS). In addition, we compared children’s counting skills. To ensure that possible between-group differences could not be explained by differences in more general performance factors, we also assessed children’s reasoning ability and processing speed. Chinese children showed a better counting performance and a more accurate performance in the non-symbolic numerical magnitude comparison task. These differences in performance could not be ascribed to differences in reasoning abilities and processing speed. In contrast, Chinese and German children did not differ significantly in the enumeration of small sets. The superior counting performance of Chinese children was thus found to be reflected in the ANS but not in the OTS.
Previous studies used a text-fading procedure as a training tool with the goal to increase silent reading fluency (i.e., proficient reading rate and comprehension). In recently published studies, this procedure resulted in lasting reading enhancements for adult and adolescent research samples. However, studies working with children reported mixed results. While reading rate improvements were observable for Dutch reading children in a text-fading training study, reading fluency improvements in standardized reading tests post-training attributable to the fading manipulation were not detectable. These results raise the question of whether text-fading training is not effective for children or whether research design issues have concealed possible transfer effects. Hence, the present study sought to investigate possible transfer effects resulting from a text-fading based reading training program, using a modified research design. Over a period of 3 weeks, two groups of German third-graders read sentences either with an adaptive text-fading procedure or at their self-paced reading rate. A standardized test measuring reading fluency at the word, sentence, and text level was conducted pre- and post-training. Text level reading fluency improved for both groups equally. Post-training gains at the word level were found for the text-fading group, however, no significant interaction between groups was revealed for word reading fluency. Sentence level reading fluency gains were found for the text-fading group, which significantly differed from the group of children reading at their self-paced reading routine. These findings provide evidence for the efficacy of text-fading as a training method for sentence reading fluency improvement also for children.
The approximate number system (ANS) is assumingly related to mathematical learning but evidence supporting this assumption is mixed. The inconsistent findings might be attributed to the fact that different measures have been used to assess the ANS and mathematical skills. Moreover, associations between the performance on a measure of the ANS and mathematical skills may be discontinuous, i.e., stronger for children with lower math scores than for children with higher math scores, and may change with age. The aim of the present study was to examine the development of the ANS and arithmetic skills in elementary school children and to investigate how the relationship between the ANS and arithmetic skills develops. Individual markers of children's ANS (internal Weber fractions and mean reaction times in a non-symbolic numerical comparison task) and addition skills were assessed in their first year of school and 1 year later. Children showed improvements in addition performance and in the internal Weber fractions, whereas mean reaction times in the non-symbolic numerical comparison task did not change significantly. While children's addition performance was associated with the internal Weber fractions in the first year, it was associated with mean reaction times in the non-symbolic numerical comparison task in the second year. These associations were not found to be discontinuous and could not be explained by individual differences in reasoning, processing speed, or inhibitory control. The present study extends previous findings by demonstrating that addition performance is associated with different markers of the ANS in the course of development.
Human beings are assumed to possess an approximate number system (ANS) dedicated to extracting and representing approximate numerical magnitude information. The ANS is assumed to be fundamental to arithmetic learning and has been shown to be associated with arithmetic performance. It is, however, still a matter of debate whether better arithmetic skills are reflected in the ANS. To address this issue, Chinese and German adults were compared regarding their performance in simple arithmetic tasks and in a non-symbolic numerical magnitude comparison task. Chinese participants showed a better performance in solving simple arithmetic tasks and faster reaction times in the non-symbolic numerical magnitude comparison task without making more errors than their German peers. These differences in performance could not be ascribed to differences in general cognitive abilities. Better arithmetic skills were thus found to be accompanied by a higher speed of retrieving non-symbolic numerical magnitude knowledge but not by a higher precision of non-symbolic numerical magnitude representations. The group difference in the speed of retrieving non-symbolic numerical magnitude knowledge was fully mediated by the performance in arithmetic tasks, suggesting that arithmetic skills shape non-symbolic numerical magnitude processing skills.
Different lines of evidence suggest that children's mental representations of numbers are spatially organized in form of a mental number line. It is, however, still unclear whether a spatial organization is specific for the numerical domain or also applies to other ordinal sequences in children. In the present study, children (n = 129) aged 8–9 years were asked to indicate the midpoint of lines flanked by task-irrelevant digits or letters. We found that the localization of the midpoint was systematically biased toward the larger digit. A similar, but less pronounced, effect was detected for letters with spatial biases toward the letter succeeding in the alphabet. Instead of assuming domain-specific forms of spatial representations, we suggest that ordinal information expressing relations between different items of a sequence might be spatially coded in children, whereby numbers seem to convey this kind of information in the most salient way.
Reaction times to previously ignored information are often delayed, a phenomenon referred to as negative priming (NP). Rothermund et al. (2005) proposed that NP is caused by the retrieval of incidental stimulus-response associations when consecutive displays share visual features but require different responses. In two experiments we examined whether the features (color, shape) that reappear in consecutive displays, or their level of processing (early-perceptual, late-semantic) moderate the likelihood that stimulus-response associations are retrieved. Using a perceptual matching task (Experiment 1), NP occurred independently of whether responses were repeated or switched. Only when implementing a semantic-matching task (Experiment 2), negative priming was determined by response-repetition as predicted by response-retrieval theory. The results can be explained in terms of a task-dependent temporal discrimination process (Milliken et al., 1998): Response-relevant features are encoded more strongly and/or are more likely to be retrieved than irrelevant features.