Refine
Language
- English (3)
Has Fulltext
- yes (3)
Is part of the Bibliography
- no (3)
Keywords
Institute
Correlative microscopy incorporates the specificity of fluorescent protein labeling into high-resolution electron micrographs. Several approaches exist for correlative microscopy, most of which have used the green fluorescent protein (GFP) as the label for light microscopy. Here we use chemical tagging and synthetic fluorophores instead, in order to achieve protein-specific labeling, and to perform multicolor imaging. We show that synthetic fluorophores preserve their post-embedding fluorescence in the presence of uranyl acetate. Post-embedding fluorescence is of such quality that the specimen can be prepared with identical protocols for scanning electron microscopy (SEM) and transmission electron microscopy (TEM); this is particularly valuable when singular or otherwise difficult samples are examined. We show that synthetic fluorophores give bright, well-resolved signals in super-resolution light microscopy, enabling us to superimpose light microscopic images with a precision of up to 25 nm in the x-y plane on electron micrographs. To exemplify the preservation quality of our new method we visualize the molecular arrangement of cadherins in adherens junctions of mouse epithelial cells.
Vertebrate life depends on renal function to filter excess fluid and remove low-molecular-weight waste products. An essential component of the kidney filtration barrier is the slit diaphragm (SD), a specialized cell-cell junction between podocytes. Although the constituents of the SD are largely known, its molecular organization remains elusive. Here, we use super-resolution correlative light and electron microscopy to quantify a linear rate of reduction in albumin concentration across the filtration barrier. Next, we use cryo-electron tomography of vitreous lamellae from high-pressure frozen native glomeruli to analyze the molecular architecture of the SD. The resulting densities resemble a fishnet pattern. Fitting of Nephrin and Neph1, the main constituents of the SD, results in a complex interaction pattern with multiple contact sites between the molecules. Using molecular dynamics flexible fitting, we construct a blueprint of the SD, where we describe all interactions. Our architectural understanding of the SD reconciles previous findings and provides a mechanistic framework for the development of novel therapies to treat kidney dysfunction.
Vertebrate life depends on renal function to filter excess fluid and remove low-molecular-weight waste products. An essential component of the kidney filtration barrier is the slit diaphragm (SD), a specialized cell-cell junction between podocytes. Although the constituents of the SD are largely known, its molecular organization remains elusive. Here, we use super-resolution correlative light and electron microscopy to quantify a linear rate of reduction in albumin concentration across the filtration barrier under no-flow conditions. Next, we use cryo-electron tomography of vitreous lamellae from high-pressure frozen native glomeruli to analyze the molecular architecture of the SD. The resulting densities resemble a fishnet pattern. Fitting of Nephrin and Neph1, the main constituents of the SD, results in a complex interaction pattern with multiple contact sites between the molecules. Using molecular dynamics simulations, we construct a blueprint of the SD that explains its molecular architecture. Our architectural understanding of the SD reconciles previous findings and provides a mechanistic framework for the development of novel therapies to treat kidney dysfunction.