Refine
Document Type
Language
- English (6)
Has Fulltext
- yes (6)
Is part of the Bibliography
- no (6)
Keywords
Institute
- Physik (6)
Phase transitions in a non-perturbative regime can be studied by ab initio Lattice Field Theory methods. The status and future research directions for LFT investigations of Quantum Chromo-Dynamics under extreme conditions are reviewed, including properties of hadrons and of the hypothesized QCD axion as inferred from QCD topology in different phases. We discuss phase transitions in strong interactions in an extended parameter space, and the possibility of model building for Dark Matter and Electro-Weak Symmetry Breaking. Methodological challenges are addressed as well, including new developments in Artificial Intelligence geared towards the identification of different phases and transitions.
We report progress in our exploration of the finite-temperature phase structure of two-flavour lattice
QCD with twisted-mass Wilson fermions and a tree-level Symanzik-improved gauge action
for a temporal lattice size Nt = 8. Extending our investigations to a wider region of parameter
space we gain a global view of the rich phase structure. We identify the finite temperature transition/
crossover for a non-vanishing twisted-mass parameter in the neighbourhood of the zerotemperature
critical line at sufficiently high b . Our findings are consistent with Creutz’s conjecture
of a conical shape of the finite temperature transition surface. Comparing with NLO lattice
cPT we achieve an improved understanding of this shape.
We discuss the use of Wilson fermions with twisted mass for simulations of QCD thermodynamics.
As a prerequisite for a future analysis of the finite-temperature transition making use
of automatic O(a) improvement, we investigate the phase structure in the space spanned by the
hopping parameter k , the coupling b , and the twisted mass parameter m. We present results for
Nf = 2 degenerate quarks on a 163×8 lattice, for which we investigate the possibility of an Aoki
phase existing at strong coupling and vanishing m, as well as of a thermal phase transition at
moderate gauge couplings and non-vanishing m.
We study the high temperature transition in pure SU(3) gauge theory and in full QCD with 3D-convolutional neural networks trained as parts of either unsupervised or semi-supervised learning problems. Pure gauge configurations are obtained with the MILC public code and full QCD are from simulations of Nf=2+1+1 Wilson fermions at maximal twist. We discuss the capability of different approaches to identify different phases using as input the configurations of Polyakov loops. To better expose fluctuations, a standardized version of Polyakov loops is also considered.
Pseudo-Critical Temperature and Thermal Equation of State from Nf = 2 Twisted Mass Lattice QCD
(2012)
We report about the current status of our ongoing study of the chiral limit of two-flavor QCD at finite temperature with twisted mass quarks. We estimate the pseudo-critical temperature Tc for three values of the pion mass in the range of mPS ~ 300 and 500 MeV and discuss different chiral scenarios. Furthermore, we present first preliminary results for the trace anomaly, pressure and energy density. We have studied several discretizations of Euclidean time up to Nt = 12 in order to assess the continuum limit of the trace anomaly. From its interpolation we evaluate the pressure and energy density employing the integral method. Here, we have focussed on two pion masses with mPS ~ 400 and 700 MeV.