Refine
Language
- English (92)
Has Fulltext
- yes (92)
Is part of the Bibliography
- no (92)
Keywords
- Heavy-ion collisions (4)
- Diffraction (3)
- Beam Energy Scan (2)
- Chiral Magnetic Effect (2)
- Elastic scattering (2)
- B-slope (1)
- Beam energy scan (1)
- Charm quark spatial diffusion coefficient (1)
- Chiral magnetic effect (1)
- Coalescence (1)
Institute
We present measurements of the differential cross sections of inclusive J/ψ meson production as a function of transverse momentum (pJ/ψT) using the μ+μ− and e+e− decay channels in proton+proton collisions at center-of-mass energies of 510 and 500 GeV, respectively, recorded by the STAR detector at the Relativistic Heavy Ion Collider. The measurement from the μ+μ− channel is for 0 <pJ/ψT< 9 GeV/c and rapidity range |yJ/ψ|< 0.4, and that from the e+e− channel is for 4 <pJ/ψT< 20 GeV/c and |yJ/ψ|< 1.0. The ψ(2S) to J/ψ ratio is also measured for 4 <pmesonT< 12 GeV/c through the e+e− decay channel. Model calculations, which incorporate different approaches toward the J/ψ production mechanism, are compared with experimental results and show reasonable agreement within uncertainties.
We report on the measurement of the Central Exclusive Production of charged particle pairs h+h− (h = π, K, p) with the STAR detector at RHIC in proton-proton collisions at √s = 200 GeV. The charged particle pairs produced in the reaction pp → p′ + h+h− + p′ are reconstructed from the tracks in the central detector and identified using the specific energy loss and the time of flight method, while the forward-scattered protons are measured in the Roman Pot system. Exclusivity of the event is guaranteed by requiring the transverse momentum balance of all four final-state particles. Differential cross sections are measured as functions of observables related to the central hadronic final state and to the forward-scattered protons. They are measured in a fiducial region corresponding to the acceptance of the STAR detector and determined by the central particles’ transverse momenta and pseudorapidities as well as by the forward-scattered protons’ momenta. This fiducial region roughly corresponds to the square of the four-momentum transfers at the proton vertices in the range 0.04 GeV2 < −t1, −t2 < 0.2 GeV2, invariant masses of the charged particle pairs up to a few GeV and pseudorapidities of the centrally-produced hadrons in the range |η| < 0.7. The measured cross sections are compared to phenomenological predictions based on the Double Pomeron Exchange (DPE) model. Structures observed in the mass spectra of π+π− and K+K− pairs are consistent with the DPE model, while angular distributions of pions suggest a dominant spin-0 contribution to π+π− production. For π+π− production, the fiducial cross section is extrapolated to the Lorentz-invariant region, which allows decomposition of the invariant mass spectrum into continuum and resonant contributions. The extrapolated cross section is well described by the continuum production and at least three resonances, the f0(980), f2(1270) and f0(1500), with a possible small contribution from the f0(1370). Fits to the extrapolated differential cross section as a function of t1 and t2 enable extraction of the exponential slope parameters in several bins of the invariant mass of π+π− pairs. These parameters are sensitive to the size of the interaction region.
Measurements of mass and Λ binding energy of 4ΛH and 4ΛHe in Au+Au collisions at sNN−−−√=3 GeV are presented, with an aim to address the charge symmetry breaking (CSB) problem in hypernuclei systems with atomic number A = 4. The Λ binding energies are measured to be 2.22±0.06(stat.)±0.14(syst.) MeV and 2.38±0.13(stat.)±0.12(syst.) MeV for 4ΛH and 4ΛHe, respectively. The measured Λ binding-energy difference is 0.16±0.14(stat.)±0.10(syst.) MeV for ground states. Combined with the γ-ray transition energies, the binding-energy difference for excited states is −0.16±0.14(stat.)±0.10(syst.) MeV, which is negative and comparable to the value of the ground states within uncertainties. These new measurements on the Λ binding-energy difference in A = 4 hypernuclei systems are consistent with the theoretical calculations that result in ΔB4Λ(1+exc)≈−ΔB4Λ(0+g.s.)<0 and present a new method for the study of CSB effect using relativistic heavy-ion collisions.
We present the first inclusive measurements of the invariant and SoftDrop jet mass in proton-proton collisions at s√=200 GeV at STAR. The measurements are fully corrected for detector effects, and reported differentially in both the jet transverse momentum and jet radius parameter. We compare the measurements to established leading-order Monte Carlo event generators and find that STAR-tuned PYTHIA-6 reproduces the data, while LHC tunes of PYTHIA-8 and HERWIG-7 do not agree with the data, providing further constraints on parameter tuning. Finally, we observe that SoftDrop grooming, for which the contribution of wide-angle non-perturbative radiation is suppressed, shifts the jet mass distributions into closer agreement with the partonic jet mass as determined by both PYTHIA-8 and a next-to-leading-logarithmic accuracy perturbative QCD calculation. These measurements complement recent LHC measurements in a different kinematic region, as well as establish a baseline for future jet mass measurements in heavy-ion collisions at RHIC.
We report a systematic measurement of cumulants, Cn, for net-proton, proton and antiproton, and correlation functions, κn, for proton and antiproton multiplicity distributions up to the fourth order in Au+Au collisions at sNN−−−√ = 7.7, 11.5, 14.5, 19.6, 27, 39, 54.4, 62.4 and 200 GeV. The Cn and κn are presented as a function of collision energy, centrality and kinematic acceptance in rapidity, y, and transverse momentum, pT. The data were taken during the first phase of the Beam Energy Scan (BES) program (2010 -- 2017) at the Relativistic Heavy Ion Collider (RHIC) facility. The measurements are carried out at midrapidity (|y|< 0.5) and transverse momentum 0.4 < pT < 2.0 GeV/c, using the STAR detector at RHIC. We observe a non-monotonic energy dependence (sNN−−−√ = 7.7 -- 62.4 GeV) of the net-proton C4/C2 with the significance of 3.1σ for the 0-5\% central Au+Au collisions. This is consistent with the expectations of critical fluctuations in a QCD-inspired model. Thermal and transport model calculations show a monotonic variation with sNN−−−√. For the multiparticle correlation functions, we observe significant negative values for a two-particle correlation function, κ2, of protons and antiprotons, which are mainly due to the effects of baryon number conservation. Furthermore, it is found that the four-particle correlation function, κ4, of protons plays a role in determining the energy dependence of proton C4/C1 below 19.6 GeV, which cannot be solely understood by the negative values of κ2 for protons.
The STAR Collaboration reports measurements of the transverse single-spin asymmetry (TSSA) of inclusive 𝜋0 at center-of-mass energies (√𝑠) of 200 GeV and 500 GeV in transversely polarized proton-proton collisions in the pseudo-rapidity region 2.7 to 4.0. The results at the two different energies show a continuous increase of the TSSA with Feynman-𝑥, and, when compared to previous measurements, no dependence on √𝑠 from 19.4 GeV to 500 GeV is found. To investigate the underlying physics leading to this large TSSA, different topologies have been studied. 𝜋0 with no nearby particles tend to have a higher TSSA than inclusive 𝜋0. The TSSA for inclusive electromagnetic jets, sensitive to the Sivers effect in the initial state, is substantially smaller, but shows the same behavior as the inclusive 𝜋0 asymmetry as a function of Feynman-𝑥. To investigate final-state effects, the Collins asymmetry of 𝜋0 inside electromagnetic jets has been measured. The Collins asymmetry is analyzed for its dependence on the 𝜋0 momentum transverse to the jet thrust axis and its dependence on the fraction of jet energy carried by the 𝜋0. The asymmetry was found to be small in each case for both center-of-mass energies. All the measurements are compared to QCD-based theoretical calculations for transverse-momentum-dependent parton distribution functions and fragmentation functions. Some discrepancies are found, which indicates new mechanisms might be involved.
Measurements of mass and Λ binding energy of 4ΛH and 4ΛHe in Au+Au collisions at sNN−−−√=3 GeV are presented, with an aim to address the charge symmetry breaking (CSB) problem in hypernuclei systems with atomic number A = 4. The Λ binding energies are measured to be 2.22±0.06(stat.)±0.14(syst.) MeV and 2.38±0.13(stat.)±0.12(syst.) MeV for 4ΛH and 4ΛHe, respectively. The measured Λ binding-energy difference is 0.16±0.14(stat.)±0.10(syst.) MeV for ground states. Combined with the γ-ray transition energies, the binding-energy difference for excited states is −0.16±0.14(stat.)±0.10(syst.) MeV, which is negative and comparable to the value of the ground states within uncertainties. These new measurements on the Λ binding-energy difference in A = 4 hypernuclei systems are consistent with the theoretical calculations that result in ΔB4Λ(1+exc)≈−ΔB4Λ(0+g.s.)<0 and present a new method for the study of CSB effect using relativistic heavy-ion collisions.
Measurement of inclusive charged-particle jet production in Au+Au collisions at √sNN = 200 GeV
(2021)
The STAR Collaboration at the Relativistic Heavy Ion Collider reports the first measurement of inclusive jet production in peripheral and central Au+Au collisions at sNN−−−−√=200 GeV. Jets are reconstructed with the anti-kT algorithm using charged tracks with pseudorapidity |η|<1.0 and transverse momentum 0.2<pchT,jet<30 GeV/c, with jet resolution parameter R=0.2, 0.3, and 0.4. The large background yield uncorrelated with the jet signal is observed to be dominated by statistical phase space, consistent with a previous coincidence measurement. This background is suppressed by requiring a high-transverse-momentum (high-pT) leading hadron in accepted jet candidates. The bias imposed by this requirement is assessed, and the pT region in which the bias is small is identified. Inclusive charged-particle jet distributions are reported in peripheral and central Au+Au collisions for 5<pchT,jet<25 GeV/c and 5<pchT,jet<30 GeV/c, respectively. The charged-particle jet inclusive yield is suppressed for central Au+Au collisions, compared to both the peripheral Au+Au yield from this measurement and to the pp yield calculated using the PYTHIA event generator. The magnitude of the suppression is consistent with that of inclusive hadron production at high pT, and that of semi-inclusive recoil jet yield when expressed in terms of energy loss due to medium-induced energy transport. Comparison of inclusive charged-particle jet yields for different values of R exhibits no significant evidence for medium-induced broadening of the transverse jet profile for R<0.4 in central Au+Au collisions. The measured distributions are consistent with theoretical model calculations that incorporate jet quenching.
Azimuthal anisotropy measurement of (multi-)strange hadrons in Au+Au collisions at √sNN = 54.4 GeV
(2023)
Azimuthal anisotropy of produced particles is one of the most important observables used to access the collective properties of the expanding medium created in relativistic heavy-ion collisions. In this paper, we present second (v2) and third (v3) order azimuthal anisotropies of K0S, ϕ, Λ, Ξ and Ω at mid-rapidity (|y|<1) in Au+Au collisions at sNN−−−√ = 54.4 GeV measured by the STAR detector. The v2 and v3 are measured as a function of transverse momentum and centrality. Their energy dependence is also studied. v3 is found to be more sensitive to the change in the center-of-mass energy than v2. Scaling by constituent quark number is found to hold for v2 within 10%. This observation could be evidence for the development of partonic collectivity in 54.4 GeV Au+Au collisions. Differences in v2 and v3 between baryons and anti-baryons are presented, and ratios of v3/v3/22 are studied and motivated by hydrodynamical calculations. The ratio of v2 of ϕ mesons to that of anti-protons (v2(ϕ)/v2(p¯)) shows centrality dependence at low transverse momentum, presumably resulting from the larger effects from hadronic interactions on anti-proton v2.
We report high-precision measurements of the longitudinal double-spin asymmetry, 𝐴𝐿𝐿, for midrapidity inclusive jet and dijet production in polarized 𝑝𝑝 collisions at a center-of-mass energy of √𝑠=200 GeV. The new inclusive jet data are sensitive to the gluon helicity distribution, Δ𝑔(𝑥,𝑄2), for gluon momentum fractions in the range from 𝑥≃0.05 to 𝑥≃0.5, while the new dijet data provide further constraints on the 𝑥 dependence of Δ𝑔(𝑥,𝑄2). The results are in good agreement with previous measurements at √𝑠=200 GeV and with recent theoretical evaluations of prior world data. Our new results have better precision and thus strengthen the evidence that Δ𝑔(𝑥,𝑄2) is positive for 𝑥>0.05.