Refine
Document Type
- Article (9)
Language
- English (9)
Has Fulltext
- yes (9)
Is part of the Bibliography
- no (9)
Keywords
- Parkinson’s disease (3)
- PINK1 (2)
- Parkinson's disease (2)
- Autophagy (1)
- Biomarkers (1)
- Cancer (1)
- Complexin 1 (1)
- LAMP3 (1)
- Lysosome (1)
- Mitochondria (1)
Institute
Mitochondrial dysfunction is well documented in presymptomatic brain tissue with Parkinson's disease (PD). Identification of the autosomal recessive variant PARK6 caused by loss-of-function mutations in the mitochondrial kinase PINK1 provides an opportunity to dissect pathogenesis. Although PARK6 shows clinical differences to PD, the induction of alpha-synuclein "Lewy" pathology by PINK1-deficiency proves that mitochondrial pathomechanisms are relevant for old-age PD. Mitochondrial dysfunction is induced by PINK1 deficiency even in peripheral tissues unaffected by disease, consistent with the ubiquitous expression of PINK1. It remains unclear whether this dysfunction is due to PINK1-mediated phosphorylation of proteins inside or outside mitochondria. Although PINK1 deficiency affects the mitochondrial fission/fusion balance, cell stress is required in mammals to alter mitochondrial dynamics and provoke apoptosis. Clearance of damaged mitochondria depends on pathways including PINK1 and Parkin and is critical for postmitotic neurons with high energy demand and cumulative stress, providing a mechanistic concept for the tissue specificity of disease.
Hereditary Parkinson’s disease (PD) can be triggered by an autosomal dominant overdose of alpha-Synuclein (SNCA) as stressor or the autosomal recessive deficiency of PINK1 Serine/Threonine-phosphorylation activity as stress-response. We demonstrated the combination of PINK1-knockout with overexpression of SNCAA53T in double mutant (DM) mice to exacerbate locomotor deficits and to reduce lifespan. To survey posttranslational modifications of proteins underlying the pathology, brain hemispheres of old DM mice underwent quantitative label-free global proteomic mass spectrometry, focused on Ser/Thr-phosphorylations. As an exceptionally strong effect, we detected >300-fold reductions of phosphoThr1928 in MAP1B, a microtubule-associated protein, and a similar reduction of phosphoSer3781 in ANK2, an interactor of microtubules. MAP1B depletion is known to trigger perturbations of microtubular mitochondria trafficking, neurite extension, and synaptic function, so it was noteworthy that relevantly decreased phosphorylation was also detected for other microtubule and microfilament factors, namely MAP2S1801, MARK1S394, MAP1AT1794, KIF1AS1537, 4.1NS541, 4.1GS86, and ADD2S528. While the MAP1B heavy chain supports regeneration and growth cones, its light chain assists DAPK1-mediated autophagy. Interestingly, relevant phosphorylation decreases of DAPK2S299, VPS13DS2429, and VPS13CS2480 in the DM brain affected regulators of autophagy, which are implicated in PD. Overall, significant downregulations were enriched for PFAM C2 domains, other kinases, and synaptic transmission factors upon automated bioinformatics, while upregulations were not enriched for selective motifs or pathways. Validation experiments confirmed the change of LC3 processing as reflection of excessive autophagy in DM brain, and dependence of ANK2/MAP1B expression on PINK1 levels. Our new data provide independent confirmation in a mouse model with combined PARK1/PARK4/PARK6 pathology that MAP1B/ANK2 phosphorylation events are implicated in Parkinsonian neurodegeneration. These findings expand on previous observations in Drosophila melanogaster that the MAP1B ortholog futsch in the presynapse is a primary target of the PARK8 protein LRRK2, and on a report that MAP1B is a component of the pathological Lewy body aggregates in PD patient brains. Similarly, ANK2 gene locus variants are associated with the risk of PD, ANK2 interacts with PINK1/Parkin-target proteins such as MIRO1 or ATP1A2, and ANK2-derived peptides are potent inhibitors of autophagy.
Parkinson's disease (PD) is the most frequent neurodegenerative movement disorder and manifests at old age. While many details of its pathogenesis remain to be elucidated, in particular the protein and mitochondrial quality control during stress responses have been implicated in monogenic PD variants. Especially the mitochondrial kinase PINK1 and the ubiquitin ligase PARKIN are known to cooperate in autophagy after mitochondrial damage. As autophagy is also induced by loss of trophic signaling and PINK1 gene expression is modulated after deprivation of cytokines, we analyzed to what extent trophic signals and starvation stress regulate PINK1 and PARKIN expression. Time course experiments with serum deprivation and nutrient starvation of human SH-SY5Y neuroblastoma cells and primary mouse neurons demonstrated phasic induction of PINK1 transcript up to twofold and PARKIN transcript levels up to sixfold. The corresponding threefold starvation induction of PARKIN protein was limited by its translocation to lysosomes. Analysis of primary mouse cells from PINK1-knockout mice indicated that PARKIN induction and lysosomal translocation occurred independent of PINK1. Suppression of the PI3K-Akt-mTOR signaling by pharmacological agents modulated PARKIN expression accordingly. In conclusion, this expression survey demonstrates that PARKIN and PINK1 are coregulated during starvation and suggest a role of both PD genes in response to trophic signals and starvation stress.
The mitochondrial kinase PINK1 and the ubiquitin ligase Parkin are participating in quality control after CCCP- or ROSinduced mitochondrial damage, and their dysfunction is associated with the development and progression of Parkinson’s disease. Furthermore, PINK1 expression is also induced by starvation indicating an additional role for PINK1 in stress response. Therefore, the effects of PINK1 deficiency on the autophago-lysosomal pathway during stress were investigated. Under trophic deprivation SH-SY5Y cells with stable PINK1 knockdown showed downregulation of key autophagic genes, including Beclin, LC3 and LAMP-2. In good agreement, protein levels of LC3-II and LAMP-2 but not of LAMP-1 were reduced in different cell model systems with PINK1 knockdown or knockout after addition of different stressors. This downregulation of autophagic factors caused increased apoptosis, which could be rescued by overexpression of LC3 or PINK1. Taken together, the PINK1-mediated reduction of autophagic key factors during stress resulted in increased cell death, thus defining an additional pathway that could contribute to the progression of Parkinson’s disease in patients with PINK1 mutations.
Parkinson's disease is the second most frequent neurodegenerative disorder. While most cases occur sporadic mutations in a growing number of genes including Parkin (PARK2) and PINK1 (PARK6) have been associated with the disease. Different animal models and cell models like patient skin fibroblasts and recombinant cell lines can be used as model systems for Parkinson's disease. Skin fibroblasts present a system with defined mutations and the cumulative cellular damage of the patients. PINK1 and Parkin genes show relevant expression levels in human fibroblasts and since both genes participate in stress response pathways, we believe fibroblasts advantageous in order to assess, e.g. the effect of stressors. Furthermore, since a bioenergetic deficit underlies early stage Parkinson's disease, while atrophy underlies later stages, the use of primary cells seems preferable over the use of tumor cell lines. The new option to use fibroblast-derived induced pluripotent stem cells redifferentiated into dopaminergic neurons is an additional benefit. However, the use of fibroblast has also some drawbacks. We have investigated PARK6 fibroblasts and they mirror closely the respiratory alterations, the expression profiles, the mitochondrial dynamics pathology and the vulnerability to proteasomal stress that has been documented in other model systems. Fibroblasts from patients with PARK2, PARK6, idiopathic Parkinson's disease, Alzheimer's disease, and spinocerebellar ataxia type 2 demonstrated a distinct and unique mRNA expression pattern of key genes in neurodegeneration. Thus, primary skin fibroblasts are a useful Parkinson's disease model, able to serve as a complement to animal mutants, transformed cell lines and patient tissues.
The involvement of the ubiquitin-proteasome system (UPS) in the course of various age-associated neurodegenerative diseases is well established. The single RING finger type E3 ubiquitin-protein ligase PARK2 is mutated in a Parkinson’s disease (PD) variant and was found to interact with ATXN2, a protein where polyglutamine expansions cause Spinocerebellar ataxia type 2 (SCA2) or increase the risk for Levodopa-responsive PD and for the motor neuron disease Amyotrophic lateral sclerosis (ALS). We previously reported evidence for a transcriptional induction of the multi-subunit RING finger Skp1/Cul/F-box (SCF) type E3 ubiquitin-protein ligase complex component FBXW8 in global microarray profiling of ATXN2-expansion mouse cerebellum and demonstrated its role for ATXN2 degradation in vitro. Now, we documented co-localization in vitro and co-immunoprecipitations both in vitro and in vivo, which indicate associations of FBXW8 with ATXN2 and PARK2. Both FBXW8 and PARK2 proteins are driven into insolubility by expanded ATXN2. Whereas the FBXW8 transcript upregulation by ATXN2- expansion was confirmed also in qPCR of skin fibroblasts and blood samples of SCA2 patients, a FBXW8 expression dysregulation was not observed in ATXN2-deficient mice, nor was a PARK2 transcript dysregulation observed in any samples. Jointly, all available data suggest that the degradation of wildtype and mutant ATXN2 is dependent on FBXW8, and that ATXN2 accumulation selectively modulates FBXW8 levels, while PARK2 might act indirectly through FBXW8. The effects of ATXN2-expansions on FBXW8 expression in peripheral tissues like blood may become useful for clinical diagnostics
The family of lysosome-associated membrane proteins (LAMP) includes the ubiquitously expressed LAMP1 and LAMP2, which account for half of the proteins in the lysosomal membrane. Another member of the LAMP family is LAMP3, which is expressed only in certain cell types and differentiation stages. LAMP3 expression is linked with poor prognosis of certain cancers, and the locus where it is encoded was identified as a risk factor for Parkinson's disease (PD). Here, we investigated the role of LAMP3 in the two main cellular degradation pathways, the proteasome and autophagy. LAMP3 mRNA was not detected in mouse models of PD or in the brain of human patients. However, it was strongly induced upon proteasomal inhibition in the neuroblastoma cell line SH-SY5Y. Induction of LAMP3 mRNA following proteasomal inhibition was dependent on UPR transcription factor ATF4 signaling and induced autophagic flux. Prevention of LAMP3 induction enhanced apoptotic cell death. In summary, these data demonstrate that LAMP3 regulation as part of the UPR contributes to protein degradation and cell survival during proteasomal dysfunction. This link between autophagy and the proteasome may be of special importance for the treatment of tumor cells with proteasomal inhibitors.
Background Parkinson's disease (PD) is an adult-onset movement disorder of largely unknown etiology. We have previously shown that loss-of-function mutations of the mitochondrial protein kinase PINK1 (PTEN induced putative kinase 1) cause the recessive PARK6 variant of PD. Methodology/Principal Findings Now we generated a PINK1 deficient mouse and observed several novel phenotypes: A progressive reduction of weight and of locomotor activity selectively for spontaneous movements occurred at old age. As in PD, abnormal dopamine levels in the aged nigrostriatal projection accompanied the reduced movements. Possibly in line with the PARK6 syndrome but in contrast to sporadic PD, a reduced lifespan, dysfunction of brainstem and sympathetic nerves, visible aggregates of alpha-synuclein within Lewy bodies or nigrostriatal neurodegeneration were not present in aged PINK1-deficient mice. However, we demonstrate PINK1 mutant mice to exhibit a progressive reduction in mitochondrial preprotein import correlating with defects of core mitochondrial functions like ATP-generation and respiration. In contrast to the strong effect of PINK1 on mitochondrial dynamics in Drosophila melanogaster and in spite of reduced expression of fission factor Mtp18, we show reduced fission and increased aggregation of mitochondria only under stress in PINK1-deficient mouse neurons. Conclusion Thus, aging Pink1 -/- mice show increasing mitochondrial dysfunction resulting in impaired neural activity similar to PD, in absence of overt neuronal death.
Parkinson's disease (PD) is a frequent neurodegenerative process in old age. Accumulation and aggregation of the lipid-binding SNARE complex component α-synuclein (SNCA) underlies this vulnerability and defines stages of disease progression. Determinants of SNCA levels and mechanisms of SNCA neurotoxicity have been intensely investigated. In view of the physiological roles of SNCA in blood to modulate vesicle release, we studied blood samples from a new large pedigree with SNCA gene duplication (PARK4 mutation) to identify effects of SNCA gain of function as potential disease biomarkers. Downregulation of complexin 1 (CPLX1) mRNA was correlated with genotype, but the expression of other Parkinson's disease genes was not. In global RNA-seq profiling of blood from presymptomatic PARK4 indviduals, bioinformatics detected significant upregulations for platelet activation, hemostasis, lipoproteins, endocytosis, lysosome, cytokine, Toll-like receptor signaling and extracellular pathways. In PARK4 platelets, stimulus-triggered degranulation was impaired. Strong SPP1, GZMH and PLTP mRNA upregulations were validated in PARK4. When analysing individuals with rapid eye movement sleep behavior disorder, the most specific known prodromal stage of general PD, only blood CPLX1 levels were altered. Validation experiments confirmed an inverse mutual regulation of SNCA and CPLX1 mRNA levels. In the 3′-UTR of the CPLX1 gene we identified a single nucleotide polymorphism that is significantly associated with PD risk. In summary, our data define CPLX1 as a PD risk factor and provide functional insights into the role and regulation of blood SNCA levels. The new blood biomarkers of PARK4 in this Turkish family might become useful for PD prediction.