Refine
Document Type
- Article (4)
- Doctoral Thesis (1)
Language
- English (5)
Has Fulltext
- yes (5)
Is part of the Bibliography
- no (5)
Keywords
- Infrared light (1)
- Light (1)
- Nanowires (1)
- Plasmons Quantum mechanics (1)
- blue bronze (1)
- charge density wave (1)
- coherent emission (1)
- phonon (1)
- terahertz (1)
- time-resolved (1)
Institute
- Physik (5)
Im Rahmen dieser Dissertation wurde die Photophysik und die elektronische Struktur einer Klasse neuartiger Donator-Akzeptor-Ladungstransfer-Komplexe untersucht. Im Wesentlichen bestehen diese Verbindungen aus einem Ferrocen-Donator (Fc) und organischen Akzeptoren, die über B-N-Bindungen verbrückt sind, welche sich bei dieser Art von makromolekularen Systemen spontan bilden. Zentraler Gegenstand dieser Arbeit war die spektroskopische Untersuchung des Metall-zu-Ligand-Ladungstransfers (engl. Abkürzung: MLCT) im elektronischen Anregungszustand dieser kationischen Komplexverbindungen, die im Weiteren als „Fc-B-bpy“-Verbindungen bezeichnet werden. Die vorliegende Arbeit analysiert eine Vielzahl miteinander verwandter Fc-B-bpy-Derivate. Die Arbeit ist gegliedert in 1.) die Analyse der Absorptionsspektren vom UV- bis zum nahen Infrarot-Spektralbereich (250-1000 nm) von Lösungen, dotierten Polymer-Dünnfilmen und Einkristallen, 2.) die zeitaufgelöste optische Spektroskopie des angeregten Zustands auf der Pikosekunden-Zeitskala, 3.) die Analyse elektrochemischer Messungen an Lösungen, und 4.) die Auswertung quantenchemischer Berechnungen. Für die zeitaufgelösten Messungen wurde ein komplexes optisches Spektroskopie-System mit breitbandigen Femtosekunden-Pulsen sowie den entsprechenden zeitaufgelösten Detektionsmethoden (spektral gefilterte Weißlicht-Detektion) aufgebaut. Die Ergebnisse dieser Arbeit beweisen die Existenz eines MLCT-Übergangs mit fast vollständigem Übergang eines Fc-Donator-Elektrons zum B-bpy-Akzeptor bei optischer Anregung. Die vergleichenden Untersuchungen der spektroskopischen Eigenschaften verschiedener Derivate liefern wichtige Information für die Entwicklung neuartiger Derivate, einschließlich verwandter Polymere, mit verbesserten spektroskopischen Eigenschaften. Es wurden transiente Absorptionsmessungen bestimmter Fc-B-bpy-Derivate in Lösung nach gepulster Anregung der MLCT-Bande (bei 500 nm) über einen Zeitbereich von 0,1-1000 ps und einen Wellenlängenbereich von 460-760 nm vorgenommen. Aus den Messergebnissen geht hervor, dass die Relaxation aus dem angeregten MLCT-Zustand in den Grundzustand auf verschiedenen Zeitskalen geschehen kann, welche im Bereich zwischen ~18 und 900 ps liegen. Ein Vergleich verschiedener Derivate mit unterschiedlicher Flexibilität in der Konformation zeigt, dass die Starrheit der Bindungen zwischen Donatoren und Akzeptoren ein wesentlicher Faktor für die Lebensdauer des angeregten Zustands ist. Wenn die Akzeptorgruppen relativ frei rotieren können, ist es der Verbindung möglich, eine Geometrie einzunehmen, von der aus ein effizienter, strahlungsfreier Übergang in den Grundzustand erfolgen kann. Dieser Befund zeigt einen Weg auf, wie neuartige, verwandte Verbindungen mit größerer Lebensdauer das angeregten Zustands synthetisiert werden können, indem darauf geachtet wird, daß eine starre molekulare Architektur zwischen Donator und Akzeptor verwirklicht wird.
Surface plasmon polaritons on (silver) nanowires are promising components for future photonic technologies. Here, we study near-field patterns on silver nanowires with a scattering-type scanning near-field optical microscope that enables the direct mapping of surface waves. We analyze the spatial pattern of the plasmon signatures for different excitation geometries and polarization and observe a plasmon wave pattern that is canted relative to the nanowire axis, which we show is due to a superposition of two different plasmon modes, as supported by electromagnetic simulations including the influence of the substrate. These findings yield new insights into the excitation and propagation of plasmon polaritons for applications in nanoplasmonic devices.
We report on the observation of coherent terahertz (THz) emission from the quasi-one-dimensional charge-density wave (CDW) system, blue bronze (K0.3MoO3), upon photo-excitation with ultrashort near-infrared optical pulses. The emission contains a broadband, low-frequency component due to the photo-Dember effect, which is present over the whole temperature range studied (30–300 K), as well as a narrow-band doublet centered at 1.5 THz, which is only observed in the CDW state and results from the generation of coherent transverse-optical phonons polarized perpendicular to the incommensurate CDW b-axis. As K0.3MoO3 is centrosymmetric, the lowest-order generation mechanism which can account for the polarization dependence of the phonon emission involves either a static surface field or quadrupolar terms due to the optical field gradients at the surface. This phonon signature is also present in the ground-state conductivity, and decays in strength with increasing temperature to vanish above $T\sim 100\,{\rm{K}}$, i.e. significantly below the CDW transition temperature. The temporal behavior of the phonon emission can be well described by a simple model with two coupled modes, which initially oscillate with opposite polarity.
Light-matter interaction in the strong coupling regime is of profound interest for fundamental quantum optics, information processing and the realization of ultrahigh-resolution sensors. Here, we report a new way to realize strong light-matter interaction, by coupling metamaterial plasmonic "quasi-particles" with photons in a photonic cavity, in the terahertz frequency range. The resultant cavity polaritons exhibit a splitting which can reach the ultra-strong coupling regime, even with the comparatively low density of quasi-particles, and inherit the high Q-factor of the cavity despite the relatively broad resonances of the Swiss-cross and split-ring-resonator metamaterials used. We also demonstrate nonlocal collective interaction of spatially separated metamaterial layers mediated by the cavity photons. By applying the quantum electrodynamic formalism to the density dependence of the polariton splitting, we can deduce the intrinsic transition dipole moment for single-quantum excitation of the metamaterial quasi-particles, which is orders of magnitude larger than those of natural atoms. These findings are of interest for the investigation of fundamental strong-coupling phenomena, but also for applications such as ultra-low-threshold terahertz polariton lasing, voltage-controlled modulators and frequency filters, and ultra-sensitive chemical and biological sensing.
We explore the tilted-pulse-front excitation technique to control the superradiant emission of terahertz (THz) pulses from large-area photonconductive semiconductor switches. Two cases are studied. First, a photoconductive antenna emitting into free space, where the propagation direction of the optically generated THz beam is controlled by the choice of the tilt angle of the pump pulse front. Second, a THz waveguide structure with an integrated photoconductive window for the generation of THz radiation, where the injection of the THz radiation into a waveguide mode is optimized by the pulse front tilt. By providing long interaction lengths, such a waveguide-based optical-pump/THz-probe set-up may provide a new platform for the study of diverse short-lived optically induced excitations.