Refine
Document Type
- Article (3)
- Bachelor Thesis (1)
- Conference Proceeding (1)
- Doctoral Thesis (1)
- Master's Thesis (1)
Has Fulltext
- yes (7)
Is part of the Bibliography
- no (7)
Keywords
- Alternating Phase Focusing (1)
- Beam dynamics simulation (1)
- Continuous wave (1)
- Heavy ion (1)
- Linear accelerator (1)
- Nonlinear beam dynamics (1)
Institute
- Physik (7)
Nach Abschluss meiner Untersuchungen, kann man sagen, dass die galvanische Einkopplung die eleganteste und wohl sinnvollste für den Kicker im FRANZ-Projekt ist, da man mit ihr perfekt kritische Einkopplung erreicht und sie relativ einfach zu realisieren ist, indem man die Zuleitung direkt an die Stützen lötet. Da die Zuleitung nur relativ kurz ist und Außerhalb der Spule verläuft verändert sie die Eigenschaften des Kickers nicht wesentlich. Die induktive Einkopplung eignet sich zwar auch sehr gut um die kritische Ankopplung zu erreichen, allerdings stellt die Indutktionsschleife eine zusätzliche Induktivität dar. Ebenso verhält es sich mit der kapazitiven Einkopplung. Der Einkoppelstift stellt eine zusätzliche Kapazität dar, welche die Eigenschaften des Kickers verändert.
Zu den Störkörpermessungen ist zu sagen, dass das Elektromagnetische Feld, dass ich vermessen habe, gut mit der Simulation aus [2] übereinstimmt. Die verschiedenen Einkopplungsverfahren haben keinen Einfluss auf die Feldverteilung, d.h. für die Feldverteilung ist es egal ob man kapazitiv, induktiv oder galvanisch einkoppelt. Der Peak, der am Anfang des Kondensators immer wieder auftritt lässt sich dadurch begründen, dass der Störkörper nicht auf einer geraden Linie durch das Modell gezogen wurde (siehe Abbildung 15. Aufgrund der Geometrie der Endplatten wurde der Störkörper leicht schräg durch das Modell und den Kondensator gezogen. Dadurch kommt der Störkörper am Anfang des Kondensators sehr nahe an ihn heran. Wenn der Störkörper nun zu nahe an der Metalloberfläche vorbeiläuft gilt die normale Störkörpertheorie nicht mehr und es treten Oberflächenladungseffekte auf, die die Phasenverschiebung beeinflussen. Somit erhält man am Anfang des Kondensators mehr Phasenverschiebung als in der Mitte des Kondensators.
Das Ziel dieser Masterarbeit ist die Auslegung des Kickers für den Bunch-Kompressor des FRANZ-Projektes. Anhand eines Modells wurden die verschiedenen Möglichkeiten der Einkopplung sowie das Feld zwischen den Kondensatorplatten bereits untersucht. In der vorliegenden Arbeit wird der Kicker mit Hilfe des Programms CST Microwave Studio erstellt und optimiert, sodass er nach Abschluss der Untersuchungen in die Fertigung gehen kann. Dabei ist der erste Schwerpunkt der Untersuchungen die Auslegung und Optimierung der Kondensatorplatten, die für die Auslenkung der Mikro-Bunche im FRANZ-Projekt verantwortlich sind. Zu Beginn der Masterarbeit gab es gezielte Winkelverteilungen, die der Kicker im Rahmen des FRANZ-Projektes erreichen sollte. Nachdem ein Erreichen dieser Werte nur bedingt möglich war, wurden verschiedene Abschnitte des FRANZ-Projektes neu überdacht und die Anforderungen an den Kicker änderten sich dadurch grundlegend. Aus diesem Grund wurde der Kicker zu Beginn der Arbeit für eine Frequenz von 5 MHz ausgelegt, wohingegen er im Rahmen der neuen Anforderungen für eine Resonanzfrequenz von 2,57 MHz ausgelegt wurde. Die Untersuchung der optimalen Resonanzfrequenz für die Anforderungen des Kickers stellt den zweiten Schwerpunkt dieser Arbeit dar.
Entwicklung und Inbetriebnahme zweier supraleitender 217 MHz CH-Strukturen für das HELIAC-Projekt
(2019)
Im Rahmen der hier vorgestellten Arbeit wurden zwei baugleiche CH-Strukturen für das im Bau befindliche HELIAC-Projekt (HELmholtz LInear ACcelerator) entwickelt und während der Produktion bis hin zu den finalen Kalttests bei 4.2 K begleitet. Zusammen mit der CH-Struktur des Demonstrator-Projektes ermöglichen sie die vollständige Inbetriebnahme und den ersten Strahltest des ersten Kryomoduls des HELIAC's, welcher aus vier Kryomodulen mit insgesamt 12 CH-Strukturen besteht. Im Vergleich zu bisherigen CH-Strukturen wurde das Design der Kavitäten im Rahmen dieser Dissertation grundlegend überarbeitet und optimiert. Durch die Entfernung der Girder und die konisch geformten Endkappen konnte die Stabilität der neuen CH-Strukturen deutlich erhöht werden, sodass die Drucksensitivität im Vergleich zur ersten CH-Kavität des Demonstrator-Projektes um ca. 80% reduziert werden konnte. Durch die nach außen gezogenen Lamellen der dynamischen Tuner konnte die mechanische Spannung sowie die benötigte Anzahl an Lamellen und damit das Risiko für das Auftreten von Multipacting reduziert werden. Das verringerte Risiko für Multipacting durch die entsprechenden Optimierungen der Kavitäten konnte durch die dauerhafte Überwindung aller Multipacting-Barrieren in den späteren Messungen verifiziert werden. Die Optimierung beider Kavitäten erfolgte dabei mit Hilfe der Simulationsprogramme CST Studio Suite und Ansys Workbench.
Beide Kavitäten wurden von der Firma Research Instruments (RI) gefertigt und während der gesamten Konstruktion durch diverse Zwischenmessungen überwacht. Nach jedem einzelnen Produktionsschritt wurden alle Einflüsse auf die Resonanzfrequenz so präzise ermittelt, dass die Zielfrequenz bei 4.2 K auf mehr als 1‰ genau erreicht werden konnte. Sowohl während der Zwischenmessungen als auch während den finalen Messungen bei 4.2 K wurden automatisierte Aufzeichnungsroutinen verwendet, welche eine sekundengenaue Auslese der Messdaten und damit eine hohe Messgenauigkeit ermöglichten. Im Hinblick auf die Komplexität der CH-Strukturen sind die geringen Abweichungen von der Zielfrequenz der direkte Beweis dafür, wie erfolgreich und präzise die Auswertungen und daraus folgenden Abschätzungen der einzelnen Zwischenmessungen waren. Insgesamt konnten bis auf die mechanischen Eigenmoden alle Ergebnisse der Simulationen durch entsprechende Messungen in guter Näherung verifiziert werden. In jeder Kavität wurden zwei dynamische Tuner verbaut, welche statische und dynamische Frequenzabweichungen im späteren Betrieb ausgleichen können. Die dynamischen Tuner wurden hinsichtlich ihrer mechanischen Stabilität und der erzeugbaren Frequenzänderung sowie ihrer mechanischen Eigenfrequenzen ausführlich mit Hilfe der Simulationsprogramme CST Studio Suite und Ansys Workbench untersucht und optimiert. Um die Ergebnisse der Simulationen zu überprüfen wurden ein eigens dafür entworfener und in der Werkstatt des Instituts für Angewandte Physik gefertigter Messaufbau verwendet, welcher es ermöglichte alle entscheidenden Eigenschaften der dynamischen Tuner präzise zu vermessen. Insgesamt stellen die ausführlichen Messungen mit Hilfe des entworfenen Aufbaus die bisher umfassendsten Messungen dynamischer Balgtuner innerhalb supraleitender CH-Strukturen dar und zeigen, mit welchen Abweichungen zwischen Simulationen und Messungen bei zukünftigen Kavitäten zu rechnen ist. Auch die Feldverteilung entlang der Strahlachse wurde während der Produktion der Kavitäten mit Hilfe der Störkörpermessmethode überprüft. Die dadurch ermittelten Werte stimmten mit einer maximalen Diskrepanz von 9% sehr gut mit den Simulationen überein.
Um eine möglichst gute Oberflächenqualität zu garantieren wurden an der Innenfläche beider Strukturen mindestens 200µm mit einer Mischung aus Fluss-, Salpeter und Phosphorsäure in mehreren Schritten abgetragen. Durch das Aufteilen der Behandlung in einzelne Schritte konnte der Einfluss der Oberflächenbehandlung auf die Resonanzfrequenz besser abgeschätzt und vorausgesehen werden. Dies führte, zusammen mit den Messungen zur Bestimmung der Drucksensitivität und der thermischen Kontraktion der Kavität beim Abkühlen, zu der hohen Übereinstimmung der gemessenen finalen Resonanzfrequenz mit der Zielfrequenz.
Die abschließenden Kalttests der beiden Kavitäten, ohne Heliummantel, wurden am Institut für Angewandte Physik der Johann Wolfgang Goethe Universität in einem vertikalen Bad-Kryostaten durchgeführt. Die erste CH-Struktur konnte erfolgreich bis zu einem maximalen Feldgradienten von 9.2 MV/m getestet werden, was einer effektiven Spannung von 3.37 MV entspricht. Die unbelastete Güte fiel dabei von anfangs 1.08 ∙ 109 auf 2.6 ∙ 108 ab. Die Vorgaben des HELIAC-Projektes liegen bei einem Beschleunigungsgradienten von 5.5 MV/m mit einer unbelasteten Güte von mindestens 3 ∙ 108. Diese Werte wurden von der ersten Kavität deutlich übertroffen, sodass sie für den Betrieb innerhalb des ersten Kryomoduls uneingeschränkt verwendet werden kann.
Bei der zweiten Kavität trat beim Abkühlen auf 4.2 K ein Vakuumleck auf, welches unter Raumtemperatur nicht detektierbar war. Aufgrund der schlechten Vakuumbedingungen innerhalb der Kavität konnten somit keine Messungen hinsichtlich der Leistungsfähigkeit durchgeführt werden, solange das Kaltleck vorhanden war. Ein erneuter Kalttest der Kavität nach Beseitigung des Lecks konnte zeitlich nicht mehr im Rahmen dieser Arbeit durchgeführt werden und ist aus diesem Grund Gegenstand nachfolgender Untersuchungen.
Insgesamt stellen die Entwicklungen, Untersuchungen und Messungen im Rahmen der hier vorgestellten Dissertation einen entscheidenden Schritt zur Inbetriebnahme des ersten Kryomoduls des HELIAC's sowie der Entwicklung weiterer CH-Kavitäten dar. Das überarbeitete Design der CH-Strukturen hat sich als erfolgreich erwiesen, weswegen es als Ausgangspunkt für die Entwicklung aller nachfolgenden CH-Strukturen des HELIAC, bis hin zur Fertigstellung des kompletten Beschleunigers, verwendet wird.
Recently the Universal Linear Accelerator (UNILAC) serves as a powerful high duty factor (25%) heavy ion beam accelerator for the ambitious experiment program at GSI. Beam time availability for SHE (Super Heavy Element)-research will be decreased due to the limitation of the UNILAC providing Uranium beams with an extremely high peak current for FAIR simultaneously. To keep the GSI-SHE program competitive on a high level and even beyond, a standalone superconducting continuous wave (100% duty factor) LINAC in combination with the upgraded GSI High Charge State injector is envisaged. In preparation for this, the first LINAC section (financed by HIM and GSI) will be tested with beam in 2017, demonstrating the future experimental capabilities. Further on the construction of an extended cryo module comprising two shorter Crossbar-H cavities is foreseen to test until end of 2017. As a final R&D step towards an entire LINAC three advanced cryo modules, each comprising two CH cavities, should be built until 2019, serving for first user experiments at the Coulomb barrier.
This novel kind of neutron beam facility will provide 1 ns short neutron pulses with an approximately thermal energy distribution around 30 keV. The pulse repetition rate will be up to 250 kHz, the total proton number per pulse will be up to 6×1010 in the final stage, starting with a p – source current of 200 mA. A second target station will allow n – activation experiments by cw beam operation. An intense 2 MeV proton beam will drive a neutron source by the 7 Li (p,n) 7 Be reaction. The facility is under construction at the physics experimental hall of the J.W. Goethe – University. The 1m thick concrete tunnel was installed in 2009. In 2011 all rf amplifiers will be delivered and installed. Successful 200 mA proton source experiments in 2010 at a test stand will be followed by experiments on the 120 kV FRANZ terminal in 2011. The 250 kHz, 100 ns chopper in front of the rf linac is under construction, while the 2 MeV bunch compressor design was finished and the technical design of all components has started. The main accelerator cavity is under construction. First 2 MeV beam tests are expected for end of 2012.
The upcoming commissioning of the superconducting (SC) continuous wave Helmholtz linear accelerators first of series cryomodule is going to demand precise alignment of the four internal SC cavities and two SC solenoids. For optimal results, a beam-based alignment method is used to reduce the misalignment of the whole cryomodule, as well as its individual components. A symmetric beam of low transverse emittance is required for this method, which is to be formed by a collimation system. It consists of two separate plates with milled slits, aligned in the horizontal and vertical direction. The collimation system and alignment measurements are proposed, investigated, and realized. The complete setup of this system and its integration into the existing environment at the GSI High Charge State Injector are presented, as well as the results of the recent reference measurements.
The new heavy ion superconducting continuous wave HElmholtz LInear ACcelerator (HELIAC) is under construction at GSI. A normal conducting injector, comprising an ECR ion source, an RFQ and a DTL, is recently in development. The new Interdigital H-mode DTL, presented in this paper, accelerates the heavy ion beam from 300 to 1400 keV/u, applying an Alternating Phase Focusing (APF) beam dynamics scheme. This APF section, consisting of two separately controlled tanks, has to provide for stable routine operation with assistance of dedicated beam diagnostics devices in the Intertank section. The installed quadrupole lenses and beam steerers installed there ensure full transmission in a wide range of input beam parameters.