Refine
Document Type
- Article (2)
- Conference Proceeding (1)
- Doctoral Thesis (1)
Has Fulltext
- yes (4)
Is part of the Bibliography
- no (4)
Keywords
- 3D modeling (1)
- Biophysical models (1)
- Calcium (1)
- Calcium signalling (1)
- Calcium waves (1)
- Dimensionsreduktion (1)
- Endoplasmic reticulum (1)
- Membranpotential (1)
- Modellierung (1)
- Numerical simulation (1)
Institute
Neuronal calcium signals propagating by simple diffusion and reaction with mobile and stationary buffers are limited to cellular microdomains. The distance intracellular calcium signals can travel may be significantly increased by means of calcium-induced calcium release from internal calcium stores, notably the endoplasmic reticulum. The organelle, which can be thought of as a cell-within-a-cell, is able to sequester large amounts of cytosolic calcium ions via SERCA pumps and selectively release them into the cytosol through ryanodine receptor channels leading to the formation of calcium waves. In this study, we set out to investigate the basic properties of such dendritic calcium waves and how they depend on the three parameters dendrite radius, ER radius and ryanodine receptor density in the endoplasmic membrane. We demonstrate that there are stable and abortive regimes for calcium waves, depending on the above morphological and physiological parameters. In stable regimes, calcium waves can travel across long dendritic distances, similar to electrical action potentials. We further observe that abortive regimes exist, which could be relevant for spike-timing dependent plasticity, as travel distances and wave velocities vary with changing intracellular architecture. For some of these regimes, analytic functions could be derived that fit the simulation data. In parameter spaces, that are non-trivially influenced by the three-dimensional calcium concentration profile, we were not able to derive such a functional description, demonstrating the mathematical requirement to model and simulate biochemical signaling in three-dimensional space.
Poster presentation: Calcium plays a pivotal role in relaying electrical signals of the cell to subcellular compartments, such as the nucleus. Since this one ion type is used by the cell for many processes a neuron needs to establish finely tuned calcium pathways in order to be able to differentiate multiple tasks, [1-3].
While it is known that neurons can actively change their shape upon neuronal activity, [4-7], we here present novel findings of activity-regulated nuclear morphology, [8,9]. With the help of an experimental and computational modeling approach, we show that hippocampal neurons can change the previously spherical shape of their nuclei to complex and infolded morphologies. This morphology regulation is demonstrated to be regulated by NMDA-receptor gated calcium, while synaptic and extra-synaptic NMDA-receptors elicit opposing effects on nuclear morphology, [8].
The structural alterations of the cell nucleus have significant effects on nuclear calcium dynamics. Compartmentalization of the nucleus, due to membrane infoldings, changes calcium frequencies, amplitudes and spatial distributions, [8,10]. Since these parameters have been shown to control downstream events towards gene transcription, [11,12], the results elucidate the cellular control of nuclear function with the help of morphology modulation. With respect to processes downstream of calcium, we show that histone H3 phosphorylation is closely linked to nuclear morphology. Investigating the nuclear morphologies of hippocampal neurons, two major classes were identified [9,10]. One class contains non-infolded nuclei that have the function of calcium signal integrators, while the other class contains highly infolded nuclei, which function as frequency detectors of nuclear calcium, [10].
Extending this interdisciplinary approach of investigating structure/function relationships in neurons, the effects of cellular morphology – as well as the morphology of the endoplasmic reticulum and other organelles – on neuronal calcium signals is currently being investigated. This endeavor makes use of highly detailed, three-dimensional models of neuronal calcium dynamics, including the three-dimensional morphology of the cell and its organelles.
Dieser Arbeit war zum Ziel gesetzt, Methoden zur Simulation von neuronalen Prozessen zu entwickeln, zu implementieren, einzusetzen und zu vergleichen. Ein besonderes Augenmerk lag dabei auf der Frage, wo eine volle räumliche Auflösung der Modelle benötigt wird und wo darauf zugunsten von vereinfachenden niederdimensionalen Modellen, die wesentlich weniger Ressourcen und mathematischen Sachverstand erfordern, verzichtet werden kann. Außerdem wurde speziell bei der Beschreibung der verschiedenen Modelle für die Elektrik der Nervenzellen das Anliegen verfolgt, deren Zusammenhänge und die Natur vereinfachender Annahmen herauszuarbeiten, um deutlich zu machen, an welchen Stellen Probleme bei der Benutzung der weniger komplexen Modelle auftreten können.
In etlichen Beispielen wurde daraufhin untersucht, inwieweit die Vereinfachung auf ein eindimensionales Kabelmodell sowie der Verzicht auf die Betrachtung einzelner Ionensorten die realistische Darstellung der zellulären Elektrik beeinträchtigen können. Dabei stellte sich heraus, dass alle betrachteten Modelle für das rein elektrische Verhalten der Neuronen im Wesentlichen dieselben Ergebnisse liefern, weshalb zu dessen Simulation in den allermeisten Fällen ein 1D-Kabelmodell völlig ausreichend und angezeigt sein dürfte.
Nur wenn Größen von Interesse sind, die in diesem Modell nicht erfasst werden, etwa das Außenraumpotential oder die Ionenkonzentrationen, muss auf genauere Modelle zurückgegriffen werden. Außerdem ist in einer Konvergenzstudie exemplarisch vorgeführt worden, dass bereits eine recht grobe Darstellung der zugrundeliegenden Rechengitter genügt, um korrekte Ergebnisse bei der Simulation der rein elektrischen Signale sicherzustellen.
In scharfem Kontrast steht hierzu die Simulation von einzelnen Ionen-Dynamiken. Bereits in der Untersuchung des Poisson-Nernst-Planck-Modells für das Membranpotential erwies sich, dass für eine korrekte Simulation der diffusiven Anteile der Ionenbewegung wesentlich feinere Gitter benötigt werden.
Noch viel deutlicher wurde dies in Simulationen von Calcium-Wellen in Dendriten, wo -- neben anderen Einsichten -- aufgezeigt werden konnte, dass nicht nur eine feine axiale
(und Zeit-) Auflösung der Dendritengeometrie zur Sicherstellung exakter Ergebnisse notwendig ist, sondern auch die räumliche Auflösung in die übrigen Dimensionen wichtig ist, weswegen eine eindimensionale Kabeldarstellung der Calcium-Dynamik erheblich fehlerbehaftet und
(jedenfalls im Zusammenhang mit Ryanodin-Rezeptorkanälen) von deren Nutzung dringend abzuraten ist. Auch die Darstellung von Kanälen als eine kontinuierliche Dichte in der Membran kann, wie darüber hinaus vorgeführt wurde, problematisch sein.
Ihre exaktere Modellierung, etwa durch Einbettung auch probabilistischer Einzelkanaldarstellungen in das räumliche Modell sollte in zukünftigen Arbeiten noch mehr thematisiert werden.
Mit Blick auf die Wiederverwendbarkeit bereits implementierter Funktionalität innerhalb dieser Arbeiten wurden spezielle Teile dieser Funktionalität hier in einem gesonderten
Kapitel genauer beschrieben. Als komplexes Beispiel für das, was simulationstechnisch bereits im Bereich des Machbaren
liegt, und gleichsam für eine Anwendung, die zeigt, wie möglichst viele der im Rahmen dieser Arbeit entwickelten Methoden miteinander kombiniert werden können, wurde die
Calcium-Dynamik eines kompletten Dendriten innerhalb eines großen aktiven neuronalen Netzwerks simuliert.
The endoplasmic reticulum (ER) forms a complex endomembrane network that reaches into the cellular compartments of a neuron, including dendritic spines. Recent work discloses that the spine ER is a dynamic structure that enters and leaves spines. While evidence exists that ER Ca2+ release is involved in synaptic plasticity, the role of spine ER morphology remains unknown. Combining a new 3D spine generator with 3D Ca2+ modeling, we addressed the relevance of ER positioning on spine-to-dendrite Ca2+ signaling. Our simulations, which account for Ca2+ exchange on the plasma membrane and ER, show that spine ER needs to be present in distinct morphological conformations in order to overcome a barrier between the spine and dendritic shaft. We demonstrate that RyR-carrying spine ER promotes spine-to-dendrite Ca2+ signals in a position-dependent manner. Our simulations indicate that RyR-carrying ER can initiate time-delayed Ca2+ reverberation, depending on the precise position of the spine ER. Upon spine growth, structural reorganization of the ER restores spine-to-dendrite Ca2+ communication, while maintaining aspects of Ca2+ homeostasis in the spine head. Our work emphasizes the relevance of precise positioning of RyR-containing spine ER in regulating the strength and timing of spine Ca2+ signaling, which could play an important role in tuning spine-to-dendrite Ca2+ communication and homeostasis.