Refine
Year of publication
Document Type
- Article (9)
- Conference Proceeding (3)
- diplomthesis (1)
- Doctoral Thesis (1)
Has Fulltext
- yes (14)
Is part of the Bibliography
- no (14)
Keywords
- Atomic and molecular interactions with photons (3)
- Chemical physics (2)
- Atomic and Molecular Physics (1)
- Attosecond science (1)
- Electronic structure of atoms and molecules (1)
- Free-electron lasers (1)
- Techniques and instrumentation (1)
- many-electron correlation (1)
- one-photon double ionization (1)
- two-electron systems (1)
Institute
- Physik (14)
- Sportwissenschaften (2)
- Präsidium (1)
The toolbox for imaging molecules is well-equipped today. Some techniques visualize the geometrical structure, others the electron density or electron orbitals. Molecules are many-body systems for which the correlation between the constituents is decisive and the spatial and the momentum distribution of one electron depends on those of the other electrons and the nuclei. Such correlations have escaped direct observation by imaging techniques so far. Here, we implement an imaging scheme which visualizes correlations between electrons by coincident detection of the reaction fragments after high energy photofragmentation. With this technique, we examine the H2 two-electron wave function in which electron–electron correlation beyond the mean-field level is prominent. We visualize the dependence of the wave function on the internuclear distance. High energy photoelectrons are shown to be a powerful tool for molecular imaging. Our study paves the way for future time resolved correlation imaging at FELs and laser based X-ray sources.
A central motivation for the development of x-ray free-electron lasers has been the prospect of time-resolved single-molecule imaging with atomic resolution. Here, we show that x-ray photoelectron diffraction—where a photoelectron emitted after x-ray absorption illuminates the molecular structure from within—can be used to image the increase of the internuclear distance during the x-ray-induced fragmentation of an O2 molecule. By measuring the molecular-frame photoelectron emission patterns for a two-photon sequential K-shell ionization in coincidence with the fragment ions, and by sorting the data as a function of the measured kinetic energy release, we can resolve the elongation of the molecular bond by approximately 1.2 a.u. within the duration of the x-ray pulse. The experiment paves the road toward time-resolved pump-probe photoelectron diffraction imaging at high-repetition-rate x-ray free-electron lasers.
Real-time observation of X-ray-induced intramolecular and interatomic electronic decay in CH2I2
(2019)
The increasing availability of X-ray free-electron lasers (XFELs) has catalyzed the development of single-object structural determination and of structural dynamics tracking in real-time. Disentangling the molecular-level reactions triggered by the interaction with an XFEL pulse is a fundamental step towards developing such applications. Here we report real-time observations of XFEL-induced electronic decay via short-lived transient electronic states in the diiodomethane molecule, using a femtosecond near-infrared probe laser. We determine the lifetimes of the transient states populated during the XFEL-induced Auger cascades and find that multiply charged iodine ions are issued from short-lived (∼20 fs) transient states, whereas the singly charged ones originate from significantly longer-lived states (∼100 fs). We identify the mechanisms behind these different time scales: contrary to the short-lived transient states which relax by molecular Auger decay, the long-lived ones decay by an interatomic Coulombic decay between two iodine atoms, during the molecular fragmentation.
In der hier vorliegenden Arbeit wurden Fragen der atomaren Korrelation sowie Verschränkung untersucht und ein Beobachtungsfenster geöffnet, durch welches es möglich ist, Einblick in die Grundzustandswellenfunktion von Helium zu erhalten. Der Elektronentransfer (Pq++He->P(q-1)++He+) in schnellen Ion-Atom-Stößen findet im Bereich des Überlapps der Wellenfunktionen des gebundenen Anfangs- und Endzustandes statt [JOpp28a, MMcD70]. Daher kann diese Reaktion besonders selektiv an der Grundzustandswellenfunktion angreifen. Die bei der Transferionisation (Pq++He->P(q-1)++He2++e-) zusätzlich stattfindende Ionisation involviert auch das zweite Elektron. Dadurch ist es möglich die komplexe Vielteilchendynamik zu untersuchen und wie später in dieser Arbeit gezeigt wird, unter bestimmten Bedingungen auch sensitiv auf die Anfangszustandskorrelation zu sein! Die Messungen wurden mit H+-, He+- und He2+-Projektilen bei Einschussenergien von 40 - 630 keV/u (1,25 < vP < 5,02 a. u.) durchgeführt. Durch den Elektronentransferprozess wird auch die Vermessung des Endzustandes, den Impulsen, aller drei Teilchen (Projektil, Elektron und He2+-Rückstoßion) erleichtert. Durch das umgeladene, dann neutrale, Projektil werden zusätzlich die Post-Collision-Effekte minimiert. Zur experimentellen Untersuchung kommt die seit Jahren etablierte Technologie des Reaktionsmikroskops (COLTRIMS, COLd Target Recoil Ion Momentum Spectroscopy) zum Einsatz [HSch89, RDoe00a, JUll03], die sich durch eine 4¼-Impulsakzeptanz für alle emittierten Teilchen auszeichnet. Nach Kreuzung der Projektilionen mit einem kalten und wohl lokalisierten Gasstrahl werden die umgeladenen Projektile detektiert. Die im Überlappbereich entstehenden Elektronen und Ionen werden mittels elektrischer und magnetischer Felder ebenfalls auf orts- und zeitauflösenden Detektoren projiziert. Anhand des Auftreffortes und der Flugzeit können die dreidimensionalen Impulsvektoren eindeutig rekonstruiert werden. Je nach Energie Projektile dominieren unterschiedliche atomare Reaktionsmechanismen. Entsprechend sind es zwei Fragenkomplexe, denen sich diese Arbeit hauptsächlich widmet: - Was ist die Reaktionsdynamik? Welche Mechanismen tragen zur Reaktion bei und wie hängen diese von Projektilladung und -energie ab? - Lässt sich die Grundzustandswellenfkt. mit dieser Technik abbilden? Die erzielten Ergebnisse sehen wie folgt aus: - Im Bereich langsamer Stöße (vP <= vB;e) wird der Stoßprozess in einem quasimolekularen Bild beschrieben (Sattelpunktionisation). Hier konnten im Wesentlichen die experimentellen Ergebnisse von Schmidt zum symmetrischen Stoßsystems He2+/He [LSch00] bestätigt und zu höheren Projektilgeschwindigkeiten fortgeschrieben werden (60 keV/u). Für die Stoßsysteme He+/He und H+/He wurden sehr ähnliche Emissionsstrukturen im Impulsraum gefunden. - Bei allen untersuchten Projektilenergien und Stoßsystemen wurde eine vom Elektroneneinfang unabhängige Stoßionisation durch Wechselwirkung mit dem Projektil (Binary Encounter, BE) gefunden. Die Erwartung, dass der Targetkern nur Beobachter der Ionisation ist, wurden eindeutig widerlegt und die Abweichungen als Folge von Korrelationseffekten gedeutet. - Speziell für das Stoßsystem He+/He bei 60 keV/u wurden sehr viele im Geschwindigkeitsraum um vP verteilte Elektronen beobachtet und einem Dreistufenprozess zugeschrieben: Zuerst erfolgt die Ionisation des Projektils und anschließend ein resonanter Zweielektroneneinfang. - Wird ein Elektron sehr schnell entfernt, wie durch den Elektroneneinfang bei hohen Projektilgeschwindigkeiten (vP ¸ 3 a. u.) findet die Ionisation sehr häufig durch Shake-off [TAbe67] statt. Die Elektronen wurden entgegen der Strahlrichtung emittiert, zu negativen Longitudinalimpulsen. Darüberhinaus wurde kein Unterschied zwischen den verschiedenen Projektilen beobachtet. Da für den Shake-off-Prozess unter den hier realisierten Bedingungen das Projektil nicht mit dem emittierten Elektron wechselwirkte, spiegelt die Elektronenimpulsverteilung direkt den, durch den Elektroneneinfang präparierten Anteil, der Grundzustandswellenfunktion wider [AGod04, MSch05]. Theoretische Rechnungen bestätigen, dass die rückwärtige Elektronenemission nur durch die stark korrelierten nicht-s2-Anteile im Heliumgrundzustand zu erklären ist. Diese Beimischungen höherer Drehimpulse von weniger als 2 % konnten entgegen der verbreiteten Lehrmeinung zum ersten Mal experimentell nachgewiesen und vermessen werden.
When a very strong light field is applied to a molecule an electron can be ejected by tunneling. In order to quantify the time-resolved dynamics of this ionization process, the concept of the Wigner time delay can be used. The properties of this process can depend on the tunneling direction relative to the molecular axis. Here, we show experimental and theoretical data on the Wigner time delay for tunnel ionization of H2 molecules and demonstrate its dependence on the emission direction of the electron with respect to the molecular axis. We find, that the observed changes in the Wigner time delay can be quantitatively explained by elongated/shortened travel paths of the emitted electrons, which occur due to spatial shifts of the electrons’ birth positions after tunneling. Our work provides therefore an intuitive perspective towards the Wigner time delay in strong-field ionization.