Refine
Year of publication
Document Type
- Article (21)
- Working Paper (2)
Language
- English (23)
Has Fulltext
- yes (23)
Is part of the Bibliography
- no (23)
Keywords
- DNA methylation (2)
- ARDS (1)
- BNC2 (1)
- Brain tumors (1)
- COVID-19 (1)
- CVID (1)
- Cancer (1)
- Children and adolescents (1)
- Choice under Risk (1)
- Critical care (1)
Institute
Objective: Pancreatic ductal adenocarcinoma (PDAC) still carries a dismal prognosis with an overall 5-year survival rate of 9%. Conventional combination chemotherapies are a clear advance in the treatment of PDAC; however, subtypes of the disease exist, which exhibit extensive resistance to such therapies. Genomic MYC amplifications represent a distinct subset of PDAC with an aggressive tumour biology. It is clear that hyperactivation of MYC generates dependencies that can be exploited therapeutically. The aim of the study was to find and to target MYC-associated dependencies.
Design: We analysed human PDAC gene expression datasets. Results were corroborated by the analysis of the small ubiquitin-like modifier (SUMO) pathway in a large PDAC cohort using immunohistochemistry. A SUMO inhibitor was used and characterised using human and murine two-dimensional, organoid and in vivo models of PDAC.
Results: We observed that MYC is connected to the SUMOylation machinery in PDAC. Components of the SUMO pathway characterise a PDAC subtype with a dismal prognosis and we provide evidence that hyperactivation of MYC is connected to an increased sensitivity to pharmacological SUMO inhibition.
Conclusion: SUMO inhibitor-based therapies should be further developed for an aggressive PDAC subtype.
Poster presentation: Introduction The ability of neurons to emit different firing patterns is considered relevant for neuronal information processing. In dopaminergic neurons, prominent patterns include highly regular pacemakers with separate spikes and stereotyped intervals, processes with repetitive bursts and partial regularity, and irregular spike trains with nonstationary properties. In order to model and quantify these processes and the variability of their patterns with respect to pharmacological and cellular properties, we aim to describe the two dimensions of burstiness and regularity in a single model framework. Methods We present a stochastic spike train model in which the degree of burstiness and the regularity of the oscillation are described independently and with two simple parameters. In this model, a background oscillation with independent and normally distributed intervals gives rise to Poissonian spike packets with a Gaussian firing intensity. The variability of inter-burst intervals and the average number of spikes in each burst indicate regularity and burstiness, respectively. These parameters can be estimated by fitting the model to the autocorrelograms. This allows to assign every spike train a position in the two-dimensional space described by regularity and burstiness and thus, to investigate the dependence of the firing patterns on different experimental conditions. Finally, burst detection in single spike trains is possible within the model because the parameter estimates determine the appropriate bandwidth that should be used for burst identification. Results and Discussion We applied the model to a sample data set obtained from dopaminergic substantia nigra and ventral tegmental area neurons recorded extracellularly in vivo and studied differences between the firing activity of dopaminergic neurons in wildtype and K-ATP channel knock-out mice. The model is able to represent a variety of discharge patterns and to describe changes induced pharmacologically. It provides a simple and objective classification scheme for the observed spike trains into pacemaker, irregular and bursty processes. In addition to the simple classification, changes in the parameters can be studied quantitatively, also including the properties related to bursting behavior. Interestingly, the proposed algorithm for burst detection may be applicable also to spike trains with nonstationary firing rates if the remaining parameters are unaffected. Thus, the proposed model and its burst detection algorithm can be useful for the description and investigation of neuronal firing patterns and their variability with cellular and experimental conditions.
We investigate what statistical properties drive risk-taking in a large set of observational panel data on online poker games (n=4,450,585). Each observation refers to a choice between a safe 'insurance' option and a binary lottery of winning or losing the game. Our setting offers a real-world choice situation with substantial incentives where probability distributions are simple, transparent, and known to the individuals. We find that individuals reveal a strong and robust preference for skewness. The effect of skewness is most pronounced among experienced and losing players but remains highly significant for winning players, in contrast to the variance effect.
HLA-DRB1 and HLA-DQB1 genetic diversity modulates response to lithium in bipolar affective disorders
(2021)
Bipolar affective disorder (BD) is a severe psychiatric illness, for which lithium (Li) is the gold standard for acute and maintenance therapies. The therapeutic response to Li in BD is heterogeneous and reliable biomarkers allowing patients stratification are still needed. A GWAS performed by the International Consortium on Lithium Genetics (ConLiGen) has recently identified genetic markers associated with treatment responses to Li in the human leukocyte antigens (HLA) region. To better understand the molecular mechanisms underlying this association, we have genetically imputed the classical alleles of the HLA region in the European patients of the ConLiGen cohort. We found our best signal for amino-acid variants belonging to the HLA-DRB1*11:01 classical allele, associated with a better response to Li (p < 1 × 10−3; FDR < 0.09 in the recessive model). Alanine or Leucine at position 74 of the HLA-DRB1 heavy chain was associated with a good response while Arginine or Glutamic acid with a poor response. As these variants have been implicated in common inflammatory/autoimmune processes, our findings strongly suggest that HLA-mediated low inflammatory background may contribute to the efficient response to Li in BD patients, while an inflammatory status overriding Li anti-inflammatory properties would favor a weak response.
Background: About 2000 children and adolescents under the age of 18 are diagnosed with cancer each year in Germany. Because of current medical treatment methods, a high survival rate can be reached for many types of the disease. Nevertheless, patients face a number of long-term effects related to the treatment. As a result, physical and psychological consequences have increasingly become the focus of research in recent years. Social dimensions of health have received little attention in health services research in oncology so far. Yet, there are no robust results that allow an estimation of whether and to what extent the disease and treatment impair the participation of children and adolescents and which factors mediate this effect. Social participation is of great importance especially because interactions with peers and experiences in different areas of life are essential for the development of children and adolescents.
Methods: Data are collected in a longitudinal, prospective, observational multicenter study. For this purpose, all patients and their parents who are being treated for cancer in one of the participating clinics throughout Germany will be interviewed within the first month after diagnosis (t1), after completion of intensive treatment (t2) and half a year after the end of intensive treatment (t3) using standardized questionnaires. Analysis will be done by descriptive and multivariate methods.
Discussion: The results can be used to identify children and adolescents in high-risk situations at an early stage in order to be able to initiate interventions tailored to the needs. Such tailored interventions will finally reduce the risk of impairments in the participation of children and adolescents and increase quality of life.
Trial registration: ClinicalTrials.gov: NCT04101123.
CXCL12-CXCR4 signaling controls multiple physiological processes and its dysregulation is associated with cancers and inflammatory diseases. To discover as-yet-unknown endogenous ligands of CXCR4, we screened a blood-derived peptide library for inhibitors of CXCR4-tropic HIV-1 strains. This approach identified a 16 amino acid fragment of serum albumin as an effective and highly specific CXCR4 antagonist. The endogenous peptide, termed EPI-X4, is evolutionarily conserved and generated from the highly abundant albumin precursor by pH-regulated proteases. EPI-X4 forms an unusual lasso-like structure and antagonizes CXCL12-induced tumor cell migration, mobilizes stem cells, and suppresses inflammatory responses in mice. Furthermore, the peptide is abundant in the urine of patients with inflammatory kidney diseases and may serve as a biomarker. Our results identify EPI-X4 as a key regulator of CXCR4 signaling and introduce proteolysis of an abundant precursor protein as an alternative concept for chemokine receptor regulation.
Non-standard errors
(2021)
In statistics, samples are drawn from a population in a data-generating process (DGP). Standard errors measure the uncertainty in sample estimates of population parameters. In science, evidence is generated to test hypotheses in an evidence-generating process (EGP). We claim that EGP variation across researchers adds uncertainty: non-standard errors. To study them, we let 164 teams test six hypotheses on the same sample. We find that non-standard errors are sizeable, on par with standard errors. Their size (i) co-varies only weakly with team merits, reproducibility, or peer rating, (ii) declines significantly after peer-feedback, and (iii) is underestimated by participants.
Background: Intensive Care Resources are heavily utilized during the COVID-19 pandemic. However, risk stratification and prediction of SARS-CoV-2 patient clinical outcomes upon ICU admission remain inadequate. This study aimed to develop a machine learning model, based on retrospective & prospective clinical data, to stratify patient risk and predict ICU survival and outcomes. Methods: A Germany-wide electronic registry was established to pseudonymously collect admission, therapeutic and discharge information of SARS-CoV-2 ICU patients retrospectively and prospectively. Machine learning approaches were evaluated for the accuracy and interpretability of predictions. The Explainable Boosting Machine approach was selected as the most suitable method. Individual, non-linear shape functions for predictive parameters and parameter interactions are reported. Results: 1039 patients were included in the Explainable Boosting Machine model, 596 patients retrospectively collected, and 443 patients prospectively collected. The model for prediction of general ICU outcome was shown to be more reliable to predict “survival”. Age, inflammatory and thrombotic activity, and severity of ARDS at ICU admission were shown to be predictive of ICU survival. Patients’ age, pulmonary dysfunction and transfer from an external institution were predictors for ECMO therapy. The interaction of patient age with D-dimer levels on admission and creatinine levels with SOFA score without GCS were predictors for renal replacement therapy. Conclusions: Using Explainable Boosting Machine analysis, we confirmed and weighed previously reported and identified novel predictors for outcome in critically ill COVID-19 patients. Using this strategy, predictive modeling of COVID-19 ICU patient outcomes can be performed overcoming the limitations of linear regression models. Trial registration “ClinicalTrials” (clinicaltrials.gov) under NCT04455451.
Background: Definite diagnosis and therapeutic management of cholangiocarcinoma (CCA) remains a challenge. The aim of the current study was to investigate feasibility and potential impact on clinical management of targeted sequencing of intraductal biopsies.
Methods: Intraductal biopsies with suspicious findings from 16 patients with CCA in later clinical course were analyzed with targeted sequencing including tumor and control benign tissue (n = 55 samples). A CCA-specific sequencing panel containing 41 genes was designed and a dual strand targeted enrichment was applied.
Results: Sequencing was successfully performed for all samples. In total, 79 mutations were identified and a mean of 1.7 mutations per tumor sample (range 0–4) as well as 2.3 per biopsy (0–6) were detected and potentially therapeutically relevant genes were identified in 6/16 cases. In 14/18 (78%) biopsies with dysplasia or inconclusive findings at least one mutation was detected. The majority of mutations were found in both surgical specimen and biopsy (68%), while 28% were only present in biopsies in contrast to 4% being only present in the surgical tumor specimen.
Conclusion: Targeted sequencing from intraductal biopsies is feasible and potentially improves the diagnostic yield. A profound genetic heterogeneity in biliary dysplasia needs to be considered in clinical management and warrants further investigation.
Translational impact: The current study is the first to demonstrate the feasibility of sequencing of intraductal biopsies which holds the potential to impact diagnostic and therapeutical management of patients with biliary dysplasia and neoplasia.
An integrative correlation of myopathology, phenotype and genotype in late onset Pompe disease
(2019)
Aims: Pompe disease is caused by pathogenic mutations in the alpha 1,4‐glucosidase (GAA) gene and in patients with late onset Pome disease (LOPD), genotype–phenotype correlations are unpredictable. Skeletal muscle pathology includes glycogen accumulation and altered autophagy of various degrees. A correlation of the muscle morphology with clinical features and the genetic background in GAA may contribute to the understanding of the phenotypic variability.
Methods: Muscle biopsies taken before enzyme replacement therapy were analysed from 53 patients with LOPD. On resin sections, glycogen accumulation, fibrosis, autophagic vacuoles and the degree of muscle damage (morphology‐score) were analysed and the results were compared with clinical findings. Additional autophagy markers microtubule‐associated protein 1A/1B‐light chain 3, p62 and Bcl2‐associated athanogene 3 were analysed on cryosections from 22 LOPD biopsies.
Results: The myopathology showed a high variability with, in most patients, a moderate glycogen accumulation and a low morphology‐score. High morphology‐scores were associated with increased fibrosis and autophagy highlighting the role of autophagy in severe stages of skeletal muscle damage. The morphology‐score did not correlate with the patient's age at biopsy, disease duration, nor with the residual GAA enzyme activity or creatine‐kinase levels. In 37 patients with LOPD, genetic analysis identified the most frequent mutation, c.‐32‐13T>G, in 95%, most commonly in combination with c.525delT (19%). No significant correlation was found between the different GAA genotypes and muscle morphology type.
Conclusions: Muscle morphology in LOPD patients shows a high variability with, in most cases, moderate pathology. Increased pathology is associated with more fibrosis and autophagy.