Refine
Document Type
- Article (7)
Language
- English (7)
Has Fulltext
- yes (7)
Is part of the Bibliography
- no (7)
Keywords
Institute
Genetic engineering of baker’s and wine yeasts using formaldehyde hyperresistance-mediating plasmids
(1997)
Yeast multi-copy vectors carrying the for maldehyde-resistance marker gene SFA have proved to be a valuable tool for research on industrially used strains of Saccharomyces cerevisiae. The genetics of these strains is often poorly understood, and for various reasons it is not possible to simply subject these strains to protocols of genetic engineering that have been established for laboratory strains of S. cerevisiae. We tested our vectors and protocols using 10 randomly picked baker’s and wine yeasts all of which could be transformed by a simple protocol with vectors conferring hyperresistance to formaldehyde. The application of formaldehyde as a selecting agent also offers the advantage of its biodegradation to CO2 during fermentation, i.e., the selecting agent will be consumed and therefore its removal during down-stream processing is not necessary. Thus, this vector provides an expression system which is simple to apply and inexpensive to use. Key words: · Yeast · Transformation · Hyperresistance to formaldehyde
The radiation-sensitive mutant pso4-1 of Saccharomyces cerevisiae shows a pleiotropic phenotype, including sensitivity to DNA cross-linking agents, nearly blocked sporulation and reduced mutability. We have cloned the putative yeast DNA repair gene PSO4 from a genomic library by complementation of the blocked UV-induced mutagenesis and of sporulation in diploids homozygous for pso4-1. Sequence analysis revealed that gene PSO4 consists of 1512 bp located upstream of UBI4 on chromosome XII and encodes a putative protein of 56.7 kDa. PSO4 is allelic to PRP19, a gene encoding a spliceosome-associated protein, but shares no significant homology with other yeast genes. Gene disruption with a destroyed reading frame of our PSO4 clone resulted in death of haploid cells, confirming the finding that PSO4/PRP19 is an essential gene. Thus, PSO4 is the third essential DNA repair gene found in the yeast S.cerevisiae.
The conditionally-lethal pso4-1 mutant allele of the spliceosomal-associated PRP19 gene allowed us to study this gene’s influence on pre-mRNA processing, DNA repair and sporulation. Phenotypes related to intron-containing genes were correlated to temperature. Splicing reporter systems and RT–PCR showed splicing efficiency in pso4-1 to be inversely correlated to growth temperature. A single amino acid substitution, replacing leucine with serine, was identified within the N-terminal region of the pso4-1 allele and was shown to affect the interacting properties of Pso4-1p. Amongst 24 interacting clones isolated in a two-hybrid screening, seven could be identified as parts of the RAD2, RLF2 and DBR1 genes. RAD2 encodes an endonuclease indispensable for nucleotide excision repair (NER), RLF2 encodes the major subunit of the chromatin assembly factor I, whose deletion results in sensitivity to UVC radiation, while DBR1 encodes the lariat RNA splicing debranching enzyme, which degrades intron lariat structures during splicing. Characterization of mutagen-sensitive phenotypes of rad2{Delta}, rlf2{Delta} and pso4-1 single and double mutant strains showed enhanced sensitivity for the rad2{Delta} pso4-1 and rlf2{Delta} pso4-1 double mutants, suggesting a functional interference of these proteins in DNA repair processes in Saccharomyces cerevisiae.
In haploid and diploid S. cerevisiae the dimer yield ratio TT̂/CT̂ is found to be 1.2/1 and 1.3/1, resp., at the UV (254 nm) unit dose 1 erg/mm2, the share of TT̂ and CT̂ in a UV (254 nm) lethal hit being 0.7 TT̂ and 0.6 CT̂. A general formulation of the UV lethal hit is given and discussed. The TT̂ + CT̂ yields obtained for S. cerevisiae are compared to those reported for other organisms. It is found that there obviously exists a directly proportional linear correlation between genome size and TT̂ + CT̂ yield for the UV dose range well below the stationary levels of the TT̂ and CT̂ formation kinetics.
An improved method for isolation of yeast m utants auxotrophic for 5′-dTM P is presented. The procedure employs the two folic acid antagonists am inopterin and sulfanilam ide (SAA). Selectiveness of the procedure depends on concentration of SAA and time of incubation.
44 mutants auxotrophic and 3 conditionally auxotrophic for 5′-dTMP were isolated. All belong to one complementation group. The corresponding gene was designated TMP1. Tetrad dissection revealed its chromosomal nature. TMP1 is not closely linked to the genes ADE2,, LEU1, ARG 4, ILV2, HIS5, LYS1 and the mating type locus. With the centromere-linked genes ARG4 and LEU1 I gene TMP1 exhibited second division segregation frequencies of 0.42 and 0.53 respectively, indicative of centromere-linkage.
Strains auxotrophic and conditionally auxotrophic for 5′-dTM P were all respiratory deficient (petite). Genetical analysis indicates that the petite phenotype is due to loss of the rho factor in cells harbouring either tmp1 or tmp1ts alleles.
A screening procedure is presented which allows the isolation of yeast mutants (typ tlr) with highly efficient utilization of exogenous deoxythymidine-5′-monophosphate (5′-dTMP) (>50% ). Data are given concerning the phenomenon of 5′-dTMP utilization in general: (i) The ability of S. cerevisiae to incorporate exogenous 5′-dTMP was found to already be a wild type feature of this yeast, i. e. apparently not to be due to any mutation such as typ , tup, tmp per or tum. Consequently these mutations are interpreted as amplifiers of a pre-given wild type potency. So far eight stages of 5′-dTMP utilization were detected as classified by the optimal 5′-dTMP requirement, with 5′-dTMP biosynthesis blocked, of the corresponding mutant strains isolated. All of them fit well into a mathematical series of the type “2n × 1.5” (n = 0, 1, 2, … , 11), where the product term for n = 11 represents the 5′-dTMP requirement (μg/ml) of the best 5′-dTMP utilizing wild type strain found, (ii) Amplification of the 5′-dTMP utilizing potency obviously is due to any genetically determined alteration of the yeast 5′-dTMP uptaking principle itself or of physiological processes accompanying the monophosphate’s uptake, (iii) The functioning of 5′-dTMP uptake requires acidic (≦ pH 6) conditions in the yeast cell’s outer environment, (iv) Some yeast typ and typ tlr mutants were found to exhibit a more or less pronounced sensitivity towards exogenously offered 5′dTM P. The response of a sensitive strain towards inhibitory concentrations of the nucleotide apparently is co-conditioned by the presence or absence of thymidylate biosynthesis. With 5′-dTMP biosynthesis blocked the 5′-dTMP mediated inhibition is a permanent one and finally leads to the death of a cell. With a functioning thymidylate biosynthesis, in contrast, the inhibition is only temporary, (v) Yeast typ or typ tlr strains were observed to dephosphorylate exogenous 5′-dTMP to thymidine due to a phosphatase activity which cannot be eliminated at pH 7 + 70 mм inorganic phosphate conditions in the growth medium. This 5′-dTMP cleavage obviously occurs outside the cell and does not seem to be correlated both to the monophosphate’s uptake and to the phenomenon of 5′-dTMP sensitivity. The destruction of 5′-dTMP does not disturb (5′-dTMP) DNA-specific labelling.