Refine
Document Type
- Article (1)
- Contribution to a Periodical (1)
Has Fulltext
- yes (2)
Is part of the Bibliography
- no (2)
Keywords
- coupon collector problem (1)
- matching (1)
- matroids, online algorithm (1)
- packing problem (1)
- secretary problem (1)
Institute
- Informatik (2)
- Präsidium (1)
Die wahrscheinlich beste Entscheidung : wie Online-Algorithmen mit der unsicheren Zukunft rechnen
(2018)
Lohnt es sich, als Skianfänger in einem schneeunsicheren Jahr Skier zu kaufen? Oder ist es günstiger, sie zu mieten? Oft müssen wir Entscheidungen treffen, ohne genügend Informationen über die Zukunft zu haben. Das gilt in noch größerem Maße für Rechnersysteme, die große Datenmengen verarbeiten und schnelle Entscheidungen treffen müssen. Damit sie trotz einer Vielzahl von Unsicherheiten erfolgreich arbeiten können, entwickeln Informatiker OnlineAlgorithmen.
We study online secretary problems with returns in combinatorial packing domains with n candidates that arrive sequentially over time in random order. The goal is to determine a feasible packing of candidates of maximum total value. In the first variant, each candidate arrives exactly twice. All 2n arrivals occur in random order. We propose a simple 0.5‐competitive algorithm. For the online bipartite matching problem, we obtain an algorithm with ratio at least 0.5721 − o(1), and an algorithm with ratio at least 0.5459 for all n ≥ 1. We extend all algorithms and ratios to k ≥ 2 arrivals per candidate. In the second variant, there is a pool of undecided candidates. In each round, a random candidate from the pool arrives. Upon arrival a candidate can be either decided (accept/reject) or postponed. We focus on minimizing the expected number of postponements when computing an optimal solution. An expected number of Θ(n log n) is always sufficient. For bipartite matching, we can show a tight bound of O(r log n), where r is the size of the optimum matching. For matroids, we can improve this further to a tight bound of O(r′ log(n/r′)), where r′ is the minimum rank of the matroid and the dual matroid.