• Deutsch
Login

Open Access

  • Home
  • Search
  • Browse
  • Publish
  • FAQ

Refine

Author

  • Birkner, Matthias (1)
  • Blath, Jochen (1)
  • Capaldo, Marcella (1)
  • Etheridge, Alison (1)
  • Möhle, Martin (1)
  • Schweinsberg, Jason (1)
  • Wakolbinger, Anton (1)

Year of publication

  • 2005 (1)

Document Type

  • Article (1)

Language

  • English (1)

Has Fulltext

  • yes (1)

Is part of the Bibliography

  • no (1)

Keywords

  • alpha-stable branching (1)
  • coalescent (1)
  • genealogy (1)
  • lookdown construction (1)

Institute

  • Mathematik (1)

1 search hit

  • 1 to 1
  • 10
  • 20
  • 50
  • 100
Alpha-stable branching and beta-coalescents (2005)
Birkner, Matthias ; Blath, Jochen ; Capaldo, Marcella ; Etheridge, Alison ; Möhle, Martin ; Schweinsberg, Jason ; Wakolbinger, Anton
We determine that the continuous-state branching processes for which the genealogy, suitably time-changed, can be described by an autonomous Markov process are precisely those arising from $\alpha$-stable branching mechanisms. The random ancestral partition is then a time-changed $\Lambda$-coalescent, where $\Lambda$ is the Beta-distribution with parameters $2-\alpha$ and $\alpha$, and the time change is given by $Z^{1-\alpha}$, where $Z$ is the total population size. For $\alpha = 2$ (Feller's branching diffusion) and $\Lambda = \delta_0$ (Kingman's coalescent), this is in the spirit of (a non-spatial version of) Perkins' Disintegration Theorem. For $\alpha =1$ and $\Lambda$ the uniform distribution on $[0,1]$, this is the duality discovered by Bertoin & Le Gall (2000) between the norming of Neveu's continuous state branching process and the Bolthausen-Sznitman coalescent. We present two approaches: one, exploiting the `modified lookdown construction', draws heavily on Donnelly & Kurtz (1999); the other is based on direct calculations with generators.
  • 1 to 1

OPUS4 Logo

  • Contact
  • Imprint
  • Sitelinks