Refine
Document Type
- Article (5)
- Doctoral Thesis (1)
- Working Paper (1)
Has Fulltext
- yes (7)
Is part of the Bibliography
- no (7)
Keywords
- diversification (2)
- hedonic (2)
- index construction (2)
- Absolutkonfiguration (1)
- Atomic and molecular interactions with photons (1)
- Bodenpreis (1)
- Box-Cox transformation (1)
- Box-Cox-Transformation (1)
- Chemical physics (1)
- Chiralität (1)
Institute
- Physik (5)
- Wirtschaftswissenschaften (2)
- Präsidium (1)
- Sportwissenschaften (1)
The toolbox for imaging molecules is well-equipped today. Some techniques visualize the geometrical structure, others the electron density or electron orbitals. Molecules are many-body systems for which the correlation between the constituents is decisive and the spatial and the momentum distribution of one electron depends on those of the other electrons and the nuclei. Such correlations have escaped direct observation by imaging techniques so far. Here, we implement an imaging scheme which visualizes correlations between electrons by coincident detection of the reaction fragments after high energy photofragmentation. With this technique, we examine the H2 two-electron wave function in which electron–electron correlation beyond the mean-field level is prominent. We visualize the dependence of the wave function on the internuclear distance. High energy photoelectrons are shown to be a powerful tool for molecular imaging. Our study paves the way for future time resolved correlation imaging at FELs and laser based X-ray sources.
Die vorliegende Arbeit befasst sich mit der Untersuchung einzelner chiraler Moleküle durch Koinzidenzmessungen. Ein Molekül wird chiral genannt, wenn es in zwei Varianten, sogenannten Enantiomeren auftritt, deren Strukturmodelle Spiegelbilder voneinander sind.
Da viele biologisch relevante Moleküle chiral sind, sind Methoden und Erkenntnisse dieses Gebiets von großer Bedeutung für Biochemie und Pharmazie. Bemerkenswert ist, dass in der Natur meist nur eines der beiden möglichen Enantiomere auftritt. Ob diese Wahl zufällig war, ob sie aufgrund der Anfangsbedingungen bei Entstehung des Lebens erfolgte, oder ob sie eine fundamentale Ursache hat, ist bisher ungeklärt. Seit der Entdeckung chiraler Molekülstrukturen in der zweiten Hälfte des 19. Jahrhunderts ist eine Vielzahl von Methoden entwickelt worden, um die beiden Enantiomere eines Moleküls zu unterscheiden und ihre Eigenschaften zu untersuchen. Aussagen über die mikroskopische Struktur (Absolutkonfiguration) können jedoch meist nur mithilfe theoretischer Modelle getroffen werden.
Der innovative Schritt der vorliegenden Arbeit besteht darin, eine in der Atomphysik entwickelte Technik zur Untersuchung einzelner mikroskopischer Systeme erstmals auf chirale Moleküle anzuwenden: Mit der sogenannten Cold Target Recoil Ion Momentum Spectroscopy (COLTRIMS) ist es möglich, einzelne Moleküle in der Gasphase mehrfach zu ionisieren und die entstandenen Fragmente (Ionen und Elektronen) zu untersuchen. Die gleichzeitige Detektion dieser Fragmente wird als Koinzidenzmessung bezeichnet.
Zunächst wurde das prototypische chirale Molekül CHBrClF mit einem Femtosekunden-Laserpuls mehrfach ionisiert, sodass alle fünf Atome als einfach geladene Ionen in einer sogenannten Coulomb-Explosion „auseinander fliegen“. Durch Messung der Impulsvektoren dieser Ionen konnte die mikroskopische Konfiguration einzelner Moleküle mit sehr hoher Zuverlässigkeit bestimmt werden. Somit eignet sich die Koinzidenzmethode auch dazu, die Anteile der rechts- bzw. linkshändigen Enantiomere in einer Probe zu bestimmen. Die Messungen an der verwendeten, racemischen Probe zeigen bei der Ionisation mit linear polarisiertem Licht im Rahmen der statistischen Unsicherheit wie erwartet eine Gleichverteilung der beiden Enantiomere.
In einem nachfolgenden Experiment konnte gezeigt werden, dass sich die Coulomb-Explosion auch mit einzelnen hochenergetischen Photonen aus einer Synchrotronstrahlungsquelle realisieren lässt. Für beide Ionisationsmechanismen – am Laser und am Synchrotron - wurden mehrere Fragmentationskanäle untersucht. Im Hinblick auf die Erweiterung der Methode hin zu komplexeren, biologisch relevanten Molekülen ist es entscheidend zu wissen, inwieweit sich die Händigkeit bestimmen lässt, wenn nicht alle Atome des Moleküls als atomare Ionen detektiert werden. Hierbei stellte sich heraus, dass auch molekulare Ionen zur Bestimmung der Absolutkonfiguration herangezogen werden können. Eine signifikante Steigerung der Effizienz konnte für den Fall demonstriert werden, dass nicht alle Fragmente aus der Coulomb-Explosion des Moleküls detektiert wurden – hier lassen sich allerdings nur noch statistische Aussagen über die Absolutkonfiguration und die Häufigkeit der beiden Enantiomere treffen.
Um die Grenzen der Methode in Bezug auf die Massenauflösung zu testen, wurden isotopenchirale Moleküle, d.h. Moleküle, die nur aufgrund zwei verschiedener Isotope chiral sind, untersucht. Auch hier ist eine Trennung der Enantiomere möglich, wenn auch mit gewissen Einschränkungen.
Ein wichtiges Merkmal chiraler Moleküle ist das unterschiedliche Verhalten der Enantiomere bei Wechselwirkung mit zirkular polarisierter Strahlung. Diese Asymmetrie wird Zirkulardichroismus genannt. Die koinzidente Untersuchung von Ionen und Elektronen aus der Fragmentation eines Moleküls eröffnet neue Möglichkeiten für die Untersuchung des Dichroismus. So können die Impulsvektoren der Ionen mit bekannten Asymmetrien in der Elektronenverteilung (Photoelektron-Zirkulardichroismus) verknüpft werden, was zu einem besseren Verständnis der Wechselwirkung elektromagnetischer Strahlung mit chiralen Molekülen führen kann.
In dieser Arbeit wurde nach Asymmetrien in der Winkelverteilung sowohl der Ionen als auch der Elektronen nach der Ionisation von CHBrClF und Propylenoxid (C3H6O) mit zirkular polarisierter Synchrotronstrahlung gesucht. In den durchgeführten Messungen konnte kein zweifelsfreier Nachweis für einen Dichroismus bei den verwendeten experimentellen Bedingungen erbracht werden. Technische und prinzipielle Limitierungen der Methode wurden diskutiert und Verbesserungsvorschläge für zukünftige Messungen genannt.
Mit der erfolgreichen Bestimmung der Absolutkonfiguration und der prinzipiellen Möglichkeit, Asymmetrien in zuvor nicht zugänglichen Messgrößen zu untersuchen, legt diese Arbeit den Grundstein für die Anwendung der Koinzidenzspektroskopie auf Fragestellungen der Stereochemie.
Ein Laserblitz von unvorstellbarer Intensität pulverisiert im Labor ein Molekül. Wachsam zeichnen die Instrumente die Flugbahn und Geschwindigkeit jedes Bruchstücks auf. Physiker gewinnen daraus hochpräzise Informationen über die Molekülstruktur. Auch links- und rechtshändige Formen lassen sich unterscheiden.
Der vorliegende Beitrag zeigt auf, wie hedonische Preisindizes für Immobilien auf der Basis von Transaktionen berechnet werden können. Der Heterogenität der Immobilien wird dabei durch ein ökonometrisches Modell Rechnung getragen, wobei in dieser Arbeit das Problem der Wahl einer geeigneten Funktionsform durch eine Transformation nach dem Ansatz von Box/Cox (1964) explizit berücksichtigt wird. Die Datenbasis deckt etwa 65% der Transaktionen des Wohnungsmarktes im Zeitraum 1990-1999 ab. Die Korrektur aufgrund unvollständiger Angaben führt zu einem Datensatz von 84 686 Transaktionen. Dieser Datensatz ist ein Vielfaches dessen, was bisher vergleichbaren Studien zugrunde lag und stellt damit eine international einmalige Datengrundlage dar.
In this paper, we calculate a transaction–based price index for apartments in Paris (France). The heterogeneous character of real estate is taken into account using an hedonic model. The functional form is specified using a general Box–Cox function. The data basis covers 84 686 transactions of the housing market in 1990:01–1999:12, which is one of the largest samples ever used in comparable studies. Low correlations of the price index with stock and bond indices (first differences) indicate diversification benefits from the inclusion of real estate in a mixed asset portfolio. JEL C43, C51, O18, R20.
Chirality is omnipresent in living nature. On the single molecule level, the response of a chiral species to a chiral probe depends on their respective handedness. A prominent example is the difference in the interaction of a chiral molecule with left or right circularly polarized light. In the present study, we show by Coulomb explosion imaging that circularly polarized light can also induce a chiral fragmentation of a planar and thus achiral molecule. The observed enantiomer strongly depends on the orientation of the molecule with respect to the light propagation direction and the helicity of the ionizing light. This finding might trigger new approaches to improve laser-driven enantioselective chemical synthesis.