Refine
Year of publication
Has Fulltext
- yes (32)
Is part of the Bibliography
- no (32)
Keywords
Institute
Background: Cichlid fishes show considerable diversity in swim bladder morphology. In members of the subfamily Etroplinae, the connection between anterior swim bladder extensions and the inner ears enhances sound transmission and translates into an improved hearing ability. We tested the hypothesis that those swim bladder modifications coincide with differences in inner ear morphology and thus compared Steatocranus tinanti (vestigial swim bladder), Hemichromis guttatus (large swim bladder without extensions), and Etroplus maculatus (intimate connection between swim bladder and inner ears).
Methodology and results: We applied immunostaining together with confocal imaging and scanning electron microscopy for the investigation of sensory epithelia, and high-resolution, contrast-enhanced microCT imaging for characterizing inner ears in 3D, and evaluated otolith dimensions. Compared to S. tinanti and H. guttatus, inner ears of E. maculatus showed an enlargement of all three maculae, and a particularly large lacinia of the macula utriculi. While our analysis of orientation patterns of ciliary bundles on the three macula types using artificially flattened maculae uncovered rather similar orientation patterns of ciliary bundles, interspecific differences became apparent when illustrating the orientation patterns on the 3D models of the maculae: differences in the shape and curvature of the lacinia of the macula utriculi, and the anterior arm of the macula lagenae resulted in an altered arrangement of ciliary bundles.
Conclusions: Our results imply that improved audition in E. maculatus is associated not only with swim bladder modifications but also with altered inner ear morphology. However, not all modifications in E. maculatus could be connected to enhanced auditory abilities, and so a potential improvement of the vestibular sense, among others, also needs to be considered. Our study highlights the value of analyzing orientation patterns of ciliary bundles in their intact 3D context in studies of inner ear morphology and physiology.
Background: Fishes show an amazing diversity in hearing abilities, inner ear structures, and otolith morphology. Inner ear morphology, however, has not yet been investigated in detail in any member of the diverse order Cyprinodontiformes. We, therefore, studied the inner ear of the cyprinodontiform freshwater fish Poecilia mexicana by analyzing the position of otoliths in situ, investigating the 3D structure of sensory epithelia, and examining the orientation patterns of ciliary bundles of the sensory hair cells, while combining μ-CT analyses, scanning electron microscopy, and immunocytochemical methods. P. mexicana occurs in different ecotypes, enabling us to study the intra-specific variability (on a qualitative basis) of fish from regular surface streams, and the Cueva del Azufre, a sulfidic cave in southern Mexico.
Results: The inner ear of Poecilia mexicana displays a combination of several remarkable features. The utricle is connected rostrally instead of dorso-rostrally to the saccule, and the macula sacculi, therefore, is very close to the utricle. Moreover, the macula sacculi possesses dorsal and ventral bulges. The two studied ecotypes of P. mexicana showed variation mainly in the shape and curvature of the macula lagenae, in the curvature of the macula sacculi, and in the thickness of the otolithic membrane.
Conclusions: Our study for the first time provides detailed insights into the auditory periphery of a cyprinodontiform inner ear and thus serves a basis—especially with regard to the application of 3D techniques—for further research on structure-function relationships of inner ears within the species-rich order Cyprinodontiformes. We suggest that other poeciliid taxa, or even other non-poeciliid cyprinodontiforms, may display similar inner ear morphologies as described here.
Background Multidirectional interactions in social (or communication) networks can have a profound effect on mate choice behavior. For example, Poecilia mexicana males show weaker expression of mating preferences when being observed by an audience male. It was suggested that this behavior is an adaptation to reduce sperm competition risk, which arises because commonly preferred female phenotypes will receive attention also by surrounding males, and/or because the audience male can copy the focal male's mate choice. Do P. mexicana males indeed respond to perceived sperm competition risk? We gave males a choice between two females and repeated the tests under one of the following conditions: (1) during the 2nd part of the tests an empty transparent cylinder was presented (control); (2) an audience male inside the cylinder observed the focal male throughout the 2nd part, or (3) the audience male was presented only before the tests, but could not eavesdrop during the actual choice tests (non-specific sperm competition risk treatments); (4) the focal male could see a rival male sexually interacting with the previously preferred, or (5) with the non-preferred female before the 2nd part of the tests (specific sperm competition risk treatments). Results When comparing the strength of individual male preferences between the 1st and 2nd part of the tests (before and after presentation of an audience), male preferences declined slightly also during the control treatment (1). However, the decrease in strength of male preferences was more than two-fold stronger in audience treatment (2), i.e., with non-specific sperm competition risk including the possibility for visual eavesdropping by the audience male. No audience effect was found in treatments (3) and (5), but a weak effect was also seen when the focal male had seen the previously preferred female sexually interact with a rival male (treatment 4; specific sperm competition risk). Conclusions When comparing the two 'non-specific sperm competition risk' treatments (2 and 3), a very strong effect was found only when the audience male could actually observe the focal male during mate choice in treatment (2). This suggests that focal males indeed attempt to conceal their mating preferences in the visual presence of other males so as to avoid mate choice copying. When there is no potential for eavesdropping [treatment (3)], non-specific specific sperm competition risk seems to play a minor or no role. Congruent with studies on other poeciliid species, our results also show that P. mexicana males respond to perceived specific sperm competition risk, and tend to share their mating effort more equally among females when the resource value of their previously preferred mate decreases (after mating with a rival male). However, this effect is comparatively weak.
Background: Local adaptation to divergent environmental conditions can promote population genetic differentiation even in the absence of geographic barriers and hence, lead to speciation. Perturbations by catastrophic events, however, can distort such parapatric ecological speciation processes. Here, we asked whether an exceptionally strong flood led to homogenization of gene pools among locally adapted populations of the Atlantic molly (Poecilia mexicana, Poeciliidae) in the Cueva del Azufre system in southern Mexico, where two strong environmental selection factors (darkness within caves and/or presence of toxic H2S in sulfidic springs) drive the diversification of P. mexicana. Nine nuclear microsatellites as well as heritable female life history traits (both as a proxy for quantitative genetics and for trait divergence) were used as markers to compare genetic differentiation, genetic diversity, and especially population mixing (immigration and emigration) before and after the flood. Results: Habitat type (i.e., non-sulfidic surface, sulfidic surface, or sulfidic cave), but not geographic distance was the major predictor of genetic differentiation. Before and after the flood, each habitat type harbored a genetically distinct population. Only a weak signal of individual dislocation among ecologically divergent habitat types was uncovered (with the exception of slightly increased dislocation from the Cueva del Azufre into the sulfidic creek, El Azufre). By contrast, several lines of evidence are indicative of increased flood-induced dislocation within the same habitat type, e.g., between different cave chambers of the Cueva del Azufre. Conclusions: The virtual absence of individual dislocation among ecologically different habitat types indicates strong natural selection against migrants. Thus, our current study exemplifies that ecological speciation in this and other systems, in which extreme environmental factors drive speciation, may be little affected by temporary perturbations, as adaptations to physico-chemical stressors may directly affect the survival probability in divergent habitat types.
The data provided is related to the article "Phylogenetic analyses of gazelles reveal repeated transitions of key ecological traits and provide novel insights into the origin of the genus Gazella". The data is based on 48 tissue samples of all nine extant species of the genus Gazella, namely Gazella gazella, Gazella arabica, Gazella bennettii, Gazella cuvieri, Gazella dorcas, Gazella leptoceros, Gazella marica, Gazella spekei, and Gazella subgutturosa and four related taxa (Saiga tatarica, Antidorcas marsupialis, Antilope cervicapra and Eudorcas rufifrons). It comprises alignments of sequences of a cytochrome b data set and of six nuclear intron markers. For the latter new primers were designed based on cattle and sheep genomes. Based on these alignments phylogenetic trees were inferred using Bayesian Inference and Maximum Likelihood methods. Furthermore, ancestral character states (inferred with BayesTraits 1.0) and ancestral ranges based on a Dispersal-Extinction-Cladogenesis model were estimated and results׳ files were stored within this article.
Background: Closely related lineages of livebearing fishes have independently adapted to two extreme environmental factors: toxic hydrogen sulphide (H2S) and perpetual darkness. Previous work has demonstrated in adult specimens that fish from these extreme habitats convergently evolved drastically increased head and offspring size, while cave fish are further characterized by reduced pigmentation and eye size. Here, we traced the development of these (and other) divergent traits in embryos of Poecilia mexicana from benign surface habitats (“surface mollies”) and a sulphidic cave (“cave mollies”), as well as in embryos of the sister taxon, Poecilia sulphuraria from a sulphidic surface spring (“sulphur mollies”). We asked at which points during development changes in the timing of the involved processes (i.e., heterochrony) would be detectible.
Methods and Results: Data were extracted from digital photographs taken of representative embryos for each stage of development and each type of molly. Embryo mass decreased in convergent fashion, but we found patterns of embryonic fat content and ovum/embryo diameter to be divergent among all three types of mollies. The intensity of yellow colouration of the yolk (a proxy for carotenoid content) was significantly lower in cave mollies throughout development. Moreover, while relative head size decreased through development in surface mollies, it increased in both types of extremophile mollies, and eye growth was arrested in mid-stage embryos of cave mollies but not in surface or sulphur mollies.
Conclusion: Our results clearly demonstrate that even among sister taxa convergence in phenotypic traits is not always achieved by the same processes during embryo development. Furthermore, teleost development is crucially dependent on sufficient carotenoid stores in the yolk, and so we discuss how the apparent ability of cave mollies to overcome this carotenoid-dependency may represent another potential mechanism explaining the lack of gene flow between surface and cave mollies.
Biotic interchange after the connection of previously independently evolving floras and faunas is thought to be one of the key factors that shaped global biodiversity as we see it today. However, it was not known how biotic interchange develops over longer time periods of several million years following the secondary contact of different biotas. Here we present a novel method to investigate the temporal dynamics of biotic interchange based on a phylogeographical meta-analysis by calculating the maximal number of observed dispersal events per million years given the temporal uncertainty of the underlying time-calibrated phylogenies. We show that biotic influx from mainland Asia onto the Indian subcontinent after Eocene continental collision was not a uniform process, but was subject to periods of acceleration, stagnancy and decrease. We discuss potential palaeoenvironmental causes for this fluctuation.
A considerable body of the literature considers the potential impact of exotic predators on native prey organisms, while comparatively, few studies have asked whether and how native predators include novel prey types into their diet spectrum. Here, we asked whether the native aquatic heteropteran Diplonychus esakii preys on the highly invasive western mosquitofish (Gambusia affinis), which has been introduced to southern China and threatens native fish species through competition and predation on their fry. We conducted 48-h prey choice experiments under semi-natural conditions. In a ‘no-choice’ experiment (one predator and one potential prey; n = 200), we found the heteropterans to prey more on large-bodied fish, a pattern that was also described for other belostomatids, while prey sex had no effect on capture rates. Moreover, large-bodied heteropterans caught more fish than small-bodied individuals. However, overall capture rates in our study were low (11.5–30%) compared to studies on other belostomatids, which explains why subsequent binary prey choice experiments using one predator and two prey—either large and small females or male and female (with smaller sample sizes of n = 20 and 30, respectively)—did not confirm the results of our first experiment. Our study exemplifies how a pattern of body size-dependent predation can arise in a novel (not coevolved) predator–prey interaction. We tentatively argue that the observed pattern could be driven by intrinsic features of the predator, namely, altered prey preferences with increasing age coupled with a general preference for large-bodied prey, or changing nutritional needs at different developmental stages.
Small-scale phenotypic differentiation along complex stream gradients in a non-native amphipod
(2019)
Background: Selective landscapes in rivers are made up by an array of selective forces that vary from source to downstream regions or between seasons, and local/temporal variation in fitness maxima can result in gradual spatio-temporal variation of phenotypic traits. This study aimed at establishing freshwater amphipods as future model organisms to study adaptive phenotypic diversification (evolutionary divergence and/or adaptive plasticity) along stream gradients.
Methods: We collected Gammarus roeselii from 16 sampling sites in the Rhine catchment during two consecutive seasons (summer and winter). Altogether, we dissected n = 1648 individuals and quantified key parameters related to morphological and life-history diversification, including naturally selected (e.g., gill surface areas) as well as primarily sexually selected traits (e.g., male antennae). Acknowledging the complexity of selective regimes in streams and the interrelated nature of selection factors, we assessed several abiotic (e.g., temperature, flow velocity) and biotic ecological parameters (e.g., conspecific densities, sex ratios) and condensed them into four principal components (PCs).
Results: Generalized least squares models revealed pronounced phenotypic differentiation in most of the traits investigated herein, and components of the stream gradient (PCs) explained parts of the observed differences. Depending on the trait under investigation, phenotypic differentiation could be ascribed to variation in abiotic conditions, anthropogenic disturbance (influx of thermally polluted water), or population parameters. For example, female fecundity showed altitudinal variation and decreased with increasing conspecific densities, while sexual dimorphism in the length of male antennae—used for mate finding and assessment—increased with increasing population densities and towards female-biased sex ratios.
Conclusions: We provide a comprehensive protocol for comparative analyses of intraspecific variation in life history traits in amphipods. Whether the observed phenotypic differentiation over small geographical distances reflects evolutionary divergence or plasticity (or both) remains to be investigated in future studies. Independent of the mechanisms involved, variation in several traits is likely to have consequences for ecosystem functions. For example, leaf-shredding in G. roeselii strongly depends on body size, which varied in dependence of several ecological parameters.
Biogenic organic precursors play an important role in atmospheric new particle formation (NPF). One of the major precursor species is α-pinene, which upon oxidation can form a suite of products covering a wide range of volatilities. Highly oxygenated organic molecules (HOMs) comprise a fraction of the oxidation products formed. While it is known that HOMs contribute to secondary organic aerosol (SOA) formation, including NPF, they have not been well studied in newly formed particles due to their very low mass concentrations. Here we present gas- and particle-phase chemical composition data from experimental studies of α-pinene oxidation, including in the presence of isoprene, at temperatures (−50 and −30 ∘C) and relative humidities (20 % and 60 %) relevant in the upper free troposphere. The measurements took place at the CERN Cosmics Leaving Outdoor Droplets (CLOUD) chamber. The particle chemical composition was analyzed by a thermal desorption differential mobility analyzer (TD-DMA) coupled to a nitrate chemical ionization–atmospheric pressure interface–time-of-flight (CI-APi-TOF) mass spectrometer. CI-APi-TOF was used for particle- and gas-phase measurements, applying the same ionization and detection scheme. Our measurements revealed the presence of C8−10 monomers and C18−20 dimers as the major compounds in the particles (diameter up to ∼ 100 nm). Particularly, for the system with isoprene added, C5 (C5H10O5−7) and C15 compounds (C15H24O5−10) were detected. This observation is consistent with the previously observed formation of such compounds in the gas phase. However, although the C5 and C15 compounds do not easily nucleate, our measurements indicate that they can still contribute to the particle growth at free tropospheric conditions. For the experiments reported here, most likely isoprene oxidation products enhance the growth of particles larger than 15 nm. Additionally, we report on the nucleation rates measured at 1.7 nm (J1.7 nm) and compared with previous studies, we found lower J1.7 nm values, very likely due to the higher α-pinene and ozone mixing ratios used in the present study.