Refine
Document Type
- Article (8)
- Report (4)
- Contribution to a Periodical (1)
- Part of Periodical (1)
Language
- German (14)
Has Fulltext
- yes (14)
Is part of the Bibliography
- no (14)
Keywords
- atomic volume (4)
- packing density (3)
- Otto Hahn (2)
- high pressure (2)
- metallic elements (2)
- Atomic volume (1)
- Atomwaffen (1)
- Cesium (1)
- Fermats letzter Satz (1)
- Frankfurt (1)
Institute
- Biochemie und Chemie (12)
- Geowissenschaften (1)
- Präsidium (1)
Metallic radii rm are correlated with the ionic radii ri by linear relationships. For groups 1 up to 7 as well as for Al, Ga, In, Tl, Sn, and Pb the ionic radii refer to the maximum valences (oxidation states) as known from compounds according to rm ~ 1.16 x (ri + 0.64) [A° ]. For groups 8 up to 12, rm ~ 0.48 x (ri + 2.26) [°A] with valences W = 14 - G (G = group number). These valences are considered regular (Wr). For groups 1 up to 12, they obey the equation Wr = 7 - |G - 7|. According to this equation all outer s electrons and the unpaired d electrons should be involved in chemical bonding, i.e. in the cohesion of the element in the solid state. From the melting temperatures and the atomic volumes it is concluded, however, that only 19 out of the 30 d-block elements have regular valences, namely the elements of groups 3, 5, 6, 10, 11 as well as Os, Ir, Zn, Cd, and possibly Ru. All of the non-regular valences are lower than the regular ones. Four of them are integers: Mn 3; Fe, Co 4; Re 6.
[Nachruf] Walter Sterzel
(2014)
The volume changes of lithium and sodium under pressure are discussed with respect to the packing density of the atoms and their valence. In densely packed Li I (bcc), Li II (fcc), and Li III (alpha-Hg ype), valence increases from 1 at ~ 5 GPa to ~ 2.5 at 40 GPa. The maximum valence 3 is attained in Li IV (body-centered cubic, 16 atoms per cell, packing density q = 0.965) at 47 GPa. In densely packed Na I (bcc) a linear increase of valence from 1 at ~ 10 GPa to 2.9 at 65 GPa is found which continues in Na II (fcc) up to 4.1 at 103 GPa.
The volume changes of solid iodine under pressure are discussed with respect to the packing density of the atoms and to valence. The packing density of solid iodine which is 0.805 under ambient pressure increases to 0.976 in monoatomic iodine-II, 0.993 in iodine-III, and 1 in fcc iodine-IV. Simultaneously, the valence increases from 1 in the free molecule to 1.78 in the crystal structure under ambient pressure, 2.72 – 2.81 in iodine-II, 2.86 – 2.96 in iodine-III, and 3 in fcc iodine-IV. The valence then remains constant up to about 180 GPa and rises moderately to 3.15 at the highest investigated pressure of 276 GPa. Parameters for calculating bond numbers, valences and atomic volumes of densely packed halogens, hydrogen, oxygen, and nitrogen are given.
In the body-centered cubic structure and in closest sphere-packings the atoms are arranged to give structures with equal densities. A measure of the packing density of atoms is derived. Several crystal structures of elements, including the bcc structure and the closest sphere packings, represent a state of maximum density in which the atomic volume is characteristic of each element. From any crystal structure of an element its atomic volume in this state can be calculated to a good approximation.
Relationships between bond lengths and bond numbers and also between atomic volumes and valencies are derived and parameters for their calculation are given for the s-block, p-block, and d-block metals. From the atomic volumes under pressure, the valencies of three solid lanthanoids have been confirmed or redetermined: La 3; Ce 2. 3. and 4; Yb 2 and 3.