Refine
Document Type
- Article (3)
- Conference Proceeding (1)
- Doctoral Thesis (1)
Language
- English (5)
Has Fulltext
- yes (5)
Is part of the Bibliography
- no (5)
Keywords
- Baryonic resonances (1)
- Freezeout (1)
- HADES (1)
- Heavy Ion Collisions (1)
- Heavy-ion reactions (1)
- Kaons (1)
In March 2019 the HADES experiment recorded 14 billion Ag+Ag collisions at √sNN = 2.55 GeV as a part of the FAIR phase-0 physics program. In this contribution, we present and investigate our capabilities to reconstruct and analyze weakly decaying strange hadrons and hypernuclei emerging from these collisions. The focus is put on measuring the mean lifetimes of these particles.
This work focuses on the investigation of K+, K- and ϕ-meson production in Ag(1.58 A GeV)+Ag collisions. The energetically cheapest channel for direct K+ production in binary NN-collisions NN→NΛK+ lies at exactly this energy. For the remaining K- and ϕ-mesons, an excess energy of 0.31 GeV and 0.34 GeV in the centre of mass system has to be provided by the system. This makes these particles an excellent probe for effects inside the medium.
K+ and K- mesons can be reconstructed directly as they possess a cτ of approximately 3.7 m. Using the approximately 3 billion recorded Ag(1.58 A GeV)+Ag 0-30% most central collision events, all reconstructed K+ and K- within the detector acceptance are investigated for their kinematic properties and their particle production rates compared to a selection of existing models.
In this letter we report the first multi-differential measurement of correlated pion-proton pairs from 2 billion Au+Au collisions at sNN=2.42 GeV collected with HADES. In this energy regime the population of Δ(1232) resonances plays an important role in the way energy is distributed between intrinsic excitation energy and kinetic energy of the hadrons in the fireball. The triple differential d3N/dMπ±pdpTdy distributions of correlated π±p pairs have been determined by subtracting the πp combinatorial background using an iterative method. The invariant-mass distributions in the Δ(1232) mass region show strong deviations from a Breit-Wigner function with vacuum width and mass. The yield of correlated pion-proton pairs exhibits a complex isospin, rapidity and transverse-momentum dependence. In the invariant mass range 1.1<Minv(GeV/c2)<1.4, the yield is found to be similar for π+p and π−p pairs, and to follow a power law 〈Apart〉α, where 〈Apart〉 is the mean number of participating nucleons. The exponent α depends strongly on the pair transverse momentum (pT) while its pT-integrated and charge-averaged value is α=1.5±0.08st±0.2sy.
We measured the Coulomb dissociation of 16O into 4He and 12C at the R3B setup in a first campaign within FAIR Phase 0 at GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt. The goal was to improve the accuracy of the experimental data for the 12C(α,γ)16O fusion reaction and to reach lower center-ofmass energies than measured so far.
The experiment required beam intensities of 109 16O ions per second at an energy of 500 MeV/nucleon. The rare case of Coulomb breakup into 12C and 4He posed another challenge: The magnetic rigidities of the particles are so close because of the same mass-to-charge-number ratio A/Z = 2 for 16O, 12C and 4He. Hence, radical changes of the R3B setup were necessary. All detectors had slits to allow the passage of the unreacted 16O ions, while 4He and 12C would hit the detectors' active areas depending on the scattering angle and their relative energies. We developed and built detectors based on organic scintillators to track and identify the reaction products with sufficient precision.