Refine
Document Type
- Article (2)
- Doctoral Thesis (1)
Has Fulltext
- yes (3)
Is part of the Bibliography
- no (3)
Keywords
- CheF (1)
- CheY (1)
- Corynebakterium efficiens (1)
- Fettsäuresynthase Typ I (1)
- Kristallkeimbildung (1)
- Röntgenkristallographie (1)
- archaellum (1)
- chemotaxis (1)
- fatty-acid synthase (1)
- fatty-acid synthesis (1)
Institute
Die Biosynthese der Fettsäuren (FS) ist in Eukaryoten und Bakterien ein hochkonserviert zentraler Stoffwechselweg, der in zwei strukturell verschiedenen Systemen ausgeführt wird. Die meisten Bakterien, Parasiten, Pflanzen und Mitochondrien nutzen ein Fettsäuresesynthase Typ-II (FAS-II) System. Bei FAS II Systemen sind alle katalytischen Domänen separate lösliche Proteine. In Eukaryoten wie auch den Bakterien Corynebakteria, Mycobakteria, Nocardia (Klasse der CMN Bakterien) liegen die katalytischen Domänen fusioniert auf einer Polypeptidkette vor, die zu einem Multienzymkomplex der Fettsäuresynthase Typ I (FAS-I) assemblieren. Die Architektur der FAS-I zeigt große Unterschiede; die X förmige Säuger-FAS-I (Maier et al., 2006), sowie die fassartigen Enzyme der Pilz FAS-I (Jenni et al., 2007; Leibundgut et al., 2007; Lomakin et al., 2007; Johansson et al., 2008) und der bakteriellen FAS-I (Boehringer et al., 2013; Ciccarelli et al., 2013). Zwischen Pilz- und bakterieller FAS-I gibt es trotz des ähnlichen Aufbaus bedeutende Unterschiede. Mycobakterium tuberculosis, der Auslöser von Tuberkulose (TB), an der jährlich über eine Million Menschen weltweit sterben (WHO, 2014), synthetisiert durch eine Symbiose von FAS-I, FAS-II und der Polyketidsynthase-13 Mykolsäuren. Durch die Mykolsäuren ist M. tuberculosis resistent gegen äußere Einflüsse. FAS-I ist in die Synthese der Vorstufen der Mykolsäuren involviert. Sie stellt im Kampf gegen TB ein potentielles Inhibierungstarget dar.
Strukturell war die bakterielle FAS-I beim Beginn der vorliegenden Arbeit, nur durch negative-stain-Elektronenmikroskopie (EM) Aufnahmen aus dem Jahr 1982 charakterisiert (Morishima et al., 1982). In dieser Arbeit konnte die bakteriellen FAS I aus M. tuberculosis (MtFAS), sowie Corynebacterium ammoniagenes (CaFAS) und Corynebacterium efficiens (CeFAS) strukturell untersucht werden. Dies geschah mit den Methoden negative-stain-EM, Einzelmolekül-Cryo-EM (Cryo-EM), Cryo EM Tomographie (CET) und Röntgenkristallographie.
Anhand von CeFAS-Kristallen konnte erstmals durch Röntgenkristallographie die Struktur einer bakteriellen FAS-I bestimmt werden. Zudem wurde die hohe konformationelle Flexibilität der bakteriellen FAS-I mit mehreren Methoden gezeigt. Für die CaFAS konnte mit Cryo-EM initiale Prozesse der Proteinkristallbildung abgebildet werden.
Crystallization and X-ray diffraction studies of a complete bacterial fatty-acid synthase type I
(2015)
While a deep understanding of the fungal and mammalian multi-enzyme type I fatty-acid synthases (FAS I) has been achieved in recent years, the bacterial FAS I family, which is narrowly distributed within the Actinomycetales genera Mycobacterium, Corynebacterium and Nocardia, is still poorly understood. This is of particular relevance for two reasons: (i) although homologous to fungal FAS I, cryo-electron microscopic studies have shown that bacterial FAS I has unique structural and functional properties, and (ii) M. tuberculosis FAS I is a drug target for the therapeutic treatment of tuberculosis (TB) and therefore is of extraordinary importance as a drug target. Crystals of FAS I from C. efficiens, a homologue of M. tuberculosis FAS I, were produced and diffracted X-rays to about 4.5 Å resolution.
Archaea are motile by the rotation of the archaellum. The archaellum switches between clockwise and counterclockwise rotation, and movement along a chemical gradient is possible by modulation of the switching frequency. This modulation involves the response regulator CheY and the archaellum adaptor protein CheF. In this study, two new crystal forms and protein structures of CheY are reported. In both crystal forms, CheY is arranged in a domain-swapped conformation. CheF, the protein bridging the chemotaxis signal transduction system and the motility apparatus, was recombinantly expressed, purified and subjected to X-ray data collection.