Refine
Year of publication
Language
- English (57)
Has Fulltext
- yes (57)
Is part of the Bibliography
- no (57)
Keywords
- Polarization (2)
- Canonical suppression (1)
- Charmonia (1)
- Elastic scattering (1)
- Flow (1)
- Hadronization (1)
- Heavy ion collisions (1)
- Heavy-ion (1)
- Net-charge correlations (1)
- Net-charge fluctuations (1)
Institute
Elliptic flow from nuclear collisions is a hadronic observable sensitive to the early stages of system evolution. We report first results on elliptic flow of charged particles at midrapidity in Au+Au collisions at sqrt[sNN] = 130 GeV using the STAR Time Projection Chamber at the Relativistic Heavy Ion Collider. The elliptic flow signal, v2, averaged over transverse momentum, reaches values of about 6% for relatively peripheral collisions and decreases for the more central collisions. This can be interpreted as the observation of a higher degree of thermalization than at lower collision energies. Pseudorapidity and transverse momentum dependence of elliptic flow are also presented.
Elliptic flow from nuclear collisions is a hadronic observable sensitive to the early stages of system evolution. We report first results on elliptic flow of charged particles at midrapidity in Au+Au collisions at sqrt(s_NN)=130 GeV using the STAR TPC at RHIC. The elliptic flow signal, v_2, averaged over transverse momentum, reaches values of about 6% for relatively peripheral collisions and decreases for the more central collisions. This can be interpreted as the observation of a higher degree of thermalization than at lower collision energies. Pseudorapidity and transverse momentum dependence of elliptic flow are also presented.
Di-hadron correlations with identified leading hadrons in 200 GeV Au+Au and d+Au collisions at STAR
(2015)
The STAR collaboration presents for the first time two-dimensional di-hadron correlations with identified leading hadrons in 200 GeV central Au+Au and minimum-bias d+Au collisions to explore hadronization mechanisms in the quark gluon plasma. The enhancement of the jet-like yield for leading pions in Au+Au data with respect to the d+Au reference and the absence of such an enhancement for leading non-pions (protons and kaons) are discussed within the context of a quark recombination scenario. The correlated yield at large angles, specifically in the \emph{ridge region}, is found to be significantly higher for leading non-pions than pions. The consistencies of the constituent quark scaling, azimuthal harmonic model and a mini-jet modification model description of the data are tested, providing further constraints on hadronization.
The acceptance-corrected dielectron excess mass spectra, where the known hadronic sources have been subtracted from the inclusive dielectron mass spectra, are reported for the first time at mid-rapidity |yee|<1 in minimum-bias Au+Au collisions at sNN−−−−√ = 19.6 and 200 GeV. The excess mass spectra are consistently described by a model calculation with a broadened ρ spectral function for Mee<1.1 GeV/c2. The integrated dielectron excess yield at sNN−−−−√ = 19.6 GeV for 0.4<Mee<0.75 GeV/c2, normalized to the charged particle multiplicity at mid-rapidity, has a value similar to that in In+In collisions at sNN−−−−√ = 17.3 GeV. For sNN−−−−√ = 200 GeV, the normalized excess yield in central collisions is higher than that at sNN−−−−√ = 17.3 GeV and increases from peripheral to central collisions. These measurements indicate that the lifetime of the hot, dense medium created in central Au+Au collisions at sNN−−−−√ = 200 GeV is longer than those in peripheral collisions and at lower energies.
Dihadron angular correlations in d + Au collisions at √sNN = 200 GeV are reported as a function of the measured zero-degree calorimeter neutral energy and the forward charged hadron multiplicity in the Au-beam direction. A finite correlated yield is observed at large relative pseudorapidity (η) on the near side (i.e. relative azimuth φ ∼ 0). This correlated yield as a function of η appears to scale with the dominant, primarily jet-related, away-side (φ ∼ π) yield. The Fourier coefficients of the φ correlation, Vn = (cosnφ), have a strong η dependence. In addition, it is found that V1 is approximately inversely proportional to the mid-rapidity event multiplicity, while V2 is independent of it with similar magnitude in the forward (d-going) and backward (Au-going) directions.
Data from the first physics run at the Relativistic Heavy-Ion Collider at Brookhaven National Laboratory, Au+Au collisions at sqrt[sNN]=130 GeV, have been analyzed by the STAR Collaboration using three-pion correlations with charged pions to study whether pions are emitted independently at freeze-out. We have made a high-statistics measurement of the three-pion correlation function and calculated the normalized three-particle correlator to obtain a quantitative measurement of the degree of chaoticity of the pion source. It is found that the degree of chaoticity seems to increase with increasing particle multiplicity.
We present the first measurements of charge-dependent correlations on angular difference variables η1 − η2 (pseudorapidity) and φ1 − φ2 (azimuth) for primary charged hadrons with transverse momentum 0.15 <= pt <= 2 GeV/c and |η| <= 1.3 from Au–Au collisions at √sNN = 130 GeV. We observe correlation structures not predicted by theory but consistent with evolution of hadron emission geometry with increasing centrality from one-dimensional fragmentation of color strings along the beam direction to an at least two-dimensional hadronization geometry along the beam and azimuth directions of a hadron-opaque bulk medium.
The STAR Collaboration at the Relativistic Heavy Ion Collider presents measurements of 𝐽/𝜓→𝑒+𝑒− at midrapidity and high transverse momentum (𝑝𝑇>5 GeV/𝑐) in 𝑝+𝑝 and central Cu+Cu collisions at √𝑠𝑁𝑁=200 GeV. The inclusive 𝐽/𝜓 production cross section for Cu+Cu collisions is found to be consistent at high 𝑝𝑇 with the binary collision-scaled cross section for 𝑝+𝑝 collisions. At a confidence level of 97%, this is in contrast to a suppression of 𝐽/𝜓 production observed at lower 𝑝𝑇. Azimuthal correlations of 𝐽/𝜓 with charged hadrons in 𝑝+𝑝 collisions provide an estimate of the contribution of 𝐵-hadron decays to 𝐽/𝜓 production of 13%±5%.
Mid-rapidity transverse mass spectra and multiplicity densities of charged and neutral kaons are reported for Au + Au collisions at √sNN = 130 GeV at RHIC. The spectra are exponential in transverse mass, with an inverse slope of about 280 MeV in central collisions. The multiplicity densities for these particles scale with the negative hadron pseudo-rapidity density. The charged kaon to pion ratios are K+/π− = 0.161± 0.002(stat) ± 0.024(syst) and K−/π− = 0.146± 0.002(stat) ± 0.022(syst) for the most central collisions. The K+/π− ratio is lower than the same ratio observed at the SPS while the K−/π− is higher than the SPS result. The ratios are enhanced by about 50% relative to p + p and p¯ + p collision data at similar energies.
STAR's measurements of directed flow (v1) around midrapidity for π±, K±, K0S, p and p¯ in Au + Au collisions at $\sqrtsNN = 200$ GeV are presented. A negative v1(y) slope is observed for most of produced particles (π±, K±, K0S and p¯). The proton v1(y) slope is found to be much closer to zero compared to antiprotons. A sizable difference is seen between v1 of protons and antiprotons in 5-30% central collisions. The v1 excitation function is presented. Comparisons to model calculations (RQMD, UrQMD, AMPT, QGSM with parton recombination, and a hydrodynamics model with a tilted source) are made. Anti-flow alone cannot explain the centrality dependence of the difference between the v1(y) slopes of protons and antiprotons.