Refine
Year of publication
Document Type
- Article (9)
- Preprint (6)
- Doctoral Thesis (2)
- Book (1)
Has Fulltext
- yes (18)
Is part of the Bibliography
- no (18)
Keywords
- Neutronenstern (3)
- neutron star (3)
- gravitational wave (2)
- gravitational waves (2)
- Einstein’s equations (1)
- Evolutionary Game Theory (1)
- Evolutionäre Spieltheorie (1)
- Game Theory (1)
- Materie (1)
- Meson (1)
Institute
We study properties of compact stars with the deconfinement phase transition in their interiors. The equation of state of cold baryon-rich matter is constructed by combining a relativistic mean-field model for the hadronic phase and the MIT Bag model for the deconfined phase. In a narrow parameter range two sequences of compact stars (twin stars), which differ by the size of the quark core, have been found. We demonstrate the possibility of a rapid transition between the twin stars with the energy release of about 10 ^52 ergs. This transition should be accompanied by the prompt neutrino burst and the delayed gamma-ray burst.
We investigate the properties of charge neutral equilibrium cold quark matter within the Nambu Jona-Lasinio model. The calculations are carried out for di erent ratios of coupling constants characterizing the vector and scalar 4 fermion interaction, xi = GV /GS. It is shown that for xi < 0.4 matter is self bound and for xi < 0.65 it has a first order phase transition of the liquid gas type. The Gibbs conditions in the mixed phase are applied for the case of two chemical potentials associated with the baryon number and electric charge. The characteristics of the quark stars are calculated for xi = 0, 0.5 and 1. It is found that the phase transition leads to a strong density variation at the surface of these stars. For xi = 1 the properties of quark stars show behaviors typical for neutron stars. At >< 0.4 the stars near to the maximum mass have a large admixture of strange quarks in their interiors. PACS number: 14.65.-q, 26.60.+c, 97.10.-q
Es wurde in dieser Arbeit gezeigt, daß es möglich ist, die der Spin-Eichtheorie zugrundeliegende Lagrangedichte so zu verallgemeinern, daß die aus ihr folgende Higgsfeldgleichung eine gravitationsähnliche Wechselwirkung enthält. Der symmetrische Teil des kanonische Energie-Impulstensors des Higgsfeldes tritt als Quelle der symmetrischen Bewegungsgleichung der angeregten Higgsfelder in Erscheinung. Ein Vergleich der zweiten Ordnung des symmetrischen Teils der Higgsfeldgleichung mit der zweiten Ordnung der Einsteingleichung im materiefreien Fall zeigt, daß beide bis auf einen antisymmetrischen Divergenzterm A m n a a der den Energie Impuls-Erhaltungssatz nicht beeinflußt, übereinstimmen. Geht man wegen der Nichtlokalität des EIST's des Gravitationsfeldes, auf der Seite der klassischen Beschreibung zu einem grobkörnigen EIST über, so stimmt dieser mit dem EIST des Higgsfeldes überein. Sieht man von in kleinen Raumzeitvolumen stark uktuierenden Termen ab, so sind die Differentialgleichungen von Gravitations und Higgsfeldwellen bis zur zweiten Ordnung identisch. Betrachtet man eine Raumzeit mit fermionischer Materie, so stimmt die erste Ordnung der Feldgleichungen ebenfalls überein. Die Higgsfeldgleichung in zweiter Ordnung koppelt halb so stark an die fermionische Materie wie es die klassische Gleichung in zweiter Ordnung tut, was auf zusätzliche Spinanteile der Higgsfelder zurückzuführen ist. Die Arbeit hat damit gezeigt, daß die durch das Higgsfeld vermittelte Kraft die Eigenschaften einer gravitativen Wechselwirkung besitzt. Daraus ergibt sich, daß nun folgende Punkte interessant sind: 1) Die in dieser Arbeit nicht betrachteten antisymmetrischen Anteile der Higgsfeldgleichung sollten auf ihre physikalische Relevanz untersucht werden, um eventuell entstehende Torsions und Nichtmetrizitätsanteile aufzuzeigen. 2) Die durch den Divergenzterm auftretenden Unterschiede der zweiten Ordnung der Spin-Eichtheorie mit der klassischen Theorie sollten genauer untersucht werden, um mögliche meßbare Unterschiede offen zu legen und die Interpretation des A m n a a-terms zu klären 3) Die in der Spin-Eichtheorie mögliche mikroskopische Betrachtungsweise sollte man quantentheoretisch formulieren und alle der Spin-Eichtheorie eigenen Felder quantisieren. 4) Der in dieser Arbeit betrachtete Iso-skalare Fall sollte Iso-vektoriell verallgemeinert werden, um so eine Vereinheitlichung mit den anderen drei Wechselwirkungen zu ermöglichen
Recent progress in the understanding of the high density phase of neutron stars advances the view that a substantial fraction of the matter consists of hyperons. The possible impacts of a highly attractive interaction between hyperons on the properties of compact stars are investigated. We find that a hadronic equation of state with hyperons allows for a first order phase transition to hyperonic matter. The corresponding hyperon stars can have rather small radii of R ~ 8 km. PACS: 26.60+c, 21.65+f, 97.60.Gb, 97.60.Jd
Recent progress in the understanding of the high density phase of neutron stars advances the view that a substantial fraction of the matter consists of hyperons. The possible impacts of a highly attractive interaction between hyperons on the properties of compact stars is investigated. We find that the equation of state exhibits a second stable minimum at large hyperon contents which is in accord with existing hypernuclear data. This second solution gives rise to new effects for neutron star properties which are similar to the ones proposed for the deconfinement transition to strange quark matter and absolutely stable strange stars. We find that the corresponding hyperstars can have rather small radii of R=6-8 km independent of the mass. PACS: 26.60+c, 21.65+f, 97.60.Gb, 97.60.Jd
We investigate various properties of neutron star matter within an e ective chiral SU(3)L × SU(3)R model. The predictions of this model are compared with a Walecka-type model. It is demonstrated that the importance of hy- peron degrees are strongly depending on the interaction used, even if the equation of state near saturation density is nearly the same in both models. While the Walecka-type model predicts a strange star core with strangeness fraction fS 4/3, the chiral model allows only for fS 1/3 and predicts that 0, + and 0 will not exist in star, in contrast to the Walecka-type model. PACS: 26.60+c, 21.65+f, 24.10Jv
Recent progress in the understanding of the high density phase of neutron stars advances the view that a substantial fraction of the matter consists of hyperons. The possible impacts of a highly attractive interaction between hyperons on the properties of compact stars are investigated.We find that a hadronic equation of state with hyperons allows for a first order phase transition to hyperonic matter. The corresponding hyperon stars can have rather small radii of R 8 km.
The effects of internal quark structure of baryons on the composition and structure of neutron star matter with hyperons are investigated in the quark- meson coupling (QMC) model. The QMC model is based on mean-field description of nonoverlapping spherical bags bound by self-consistent exchange of scalar and vector mesons. The predictions of this model are compared with quantum hadrodynamic (QHD) model calibrated to reproduce identical nuclear matter saturation properties. By employing a density dependent bag constant through direct coupling to the scalar field, the QMC model is found to exhibit identical properties as QHD near saturation density. Furthermore, this modified QMC model provides well-behaved and continuous solutions at high densities relevant to the core of neutron stars. Two additional strange mesons are introduced which couple only to the strange quark in the QMC model and to the hyperons in the QHD model. The constitution and structure of stars with hyperons in the QMC and QHD models reveal interesting di erences. This suggests the importance of quark structure e ects in the baryons at high densities. PACS number(s): 26.60.+c, 21.65.+f, 12.39.Ba, 24.85.+p
Kompakte Sterne stellen neben weissen Zwergen und schwarzen Löchern eine der möglichen Endzustände der Evolution von Sonnen dar. Diese extrem dichten astrophysikalischen Objekte können als Restobjekte von massiven Sternen im Zentrum von Supernova-Explosionen entstehen. Allein in unserer Galaxie sind derzeit ca. 1500 solcher Objekte bekannt. Die Materie innerhalb der kompakten Sterne stellt neben der frühen Urknall-Phase, die dichteste, uns zugängliche Energieform im gesamten Universum dar; sie beschreibt den letzten stabilen Zustand bevor die Materie unaufhaltsam kollabiert und durch die Bildung eines Ereignishorizontes von der Aussenwelt abgetrennt wird. Die Eigenschaften der kompakten Sterne werden massgeblich durch zwei fundamentale Kräfte bestimmt: Die Quanten-Chromodynamik (QCD), die den Kräfteaustausch der elementaren Quarks durch farbgeladene Gluonen beschreibt, und die Allgemeine Relativitätstheorie, die die attraktive, gravitative Wechselwirkung der Sterne durch eine Verformung ihrer raumzeitlichen Struktur formuliert. In den ersten beiden Kapiteln der vorliegenden Arbeit wird zunächst die derzeitige Theorie der elementaren Wechselwirkungen mittels einer eichtheoretischen Formulierung beschrieben. Astrophysikalische Folgerungen der Allgemeinen Relativitätstheorie, wie die Raumzeitkrümmung innerhalb und ausserhalb kompakter Sterne und die Theorie schwarzer Löcher werden im Detail diskutiert und mittels dreidimensionaler Diagramme veranschaulicht. Im dritten Kapitel werden die numerisch erhaltenen Resultate der Eigenschaften der kompakten Sterne zusammengefasst und in folgende Gruppen untergliedert: Neutronensterne, Quarksterne, hybride Sterne und Zwillingssterne. Die mögliche Realisierung des Quark-Gluon-Plasmas im Inneren der kompakten Sterne wird diskutiert. Anhand von existierenden und zukünftig geplanten astrophysikalischen Beobachtungsmöglichkeiten (z.B. Gravitationswellendetektoren) wird die experimentelle Überprüfbarkeit der dargestellten Ergebnisse aufgezeigt.
The long-awaited detection of a gravitational wave from the merger of a binary neutron star in August 2017 (GW170817) marked the beginning of the new field of multi-messenger gravitational wave astronomy. By exploiting the extracted tidal deformations of the two neutron stars from the late inspiral phase of GW170817, it was possible to constrain several global properties of the equation of state of neutron star matter. By means of fully general-relativistic hydrodynamic simulations, it is possible to get an insight into the hydrodynamic evolution of matter and into the structure of the space–time deformation caused by the remnant of binary neutron star merger. Neutron star mergers represent an optimal astrophysical laboratory to investigate the phase transition from confined hadronic matter to deconfined quark matter. With future gravitational wave detectors, it will most likely be possible in the near future to investigate the hadron-quark phase transition by analyzing the spectrum of the post-merger gravitational wave of the differentially rotating hypermassive hybrid star. In contrast to hypermassive neutron stars, these highly differentially rotating objects contain deconfined strange quark matter in their slowly rotating inner region.