Refine
Document Type
- Article (6)
Language
- English (6)
Has Fulltext
- yes (6)
Is part of the Bibliography
- no (6)
Keywords
- Red blood cell transfusion (1)
- anaemia (1)
- elderly patients (1)
- surgery (1)
Institute
- Medizin (6)
Introduction: Hypothermia improves survival and neurological recovery after cardiac arrest. Pro-inflammatory cytokines have been implicated in focal cerebral ischemia/reperfusion in-jury. It is unknown whether cardiac arrest also triggers the release of cerebral inflammatory molecules, and whether therapeutic hypothermia alters this inflammatory response. This study sought to examine whether hypothermia or the combination of hypothermia with anes-thetic postconditioning with sevoflurane affect cerebral inflammatory response after cardio-pulmonary resuscitation. Methods: Thirty pigs (28 - 34kg) were subjected to cardiac arrest following temporary coro-nary artery occlusion. After 7 minutes of ventricular fibrillation and 2 minutes of basic life support, advanced cardiac life support was started according to the current AHA guidelines. Return of spontaneous circulation was achieved in 21 animals who were randomized to ei-ther normothermia at 38degreesC, hypothermia at 33degreesC or hypothermia at 33degreesC combined with se-voflurane (each group: n = 7) for 24 hours. The effects of hypothermia and the combination of hypothermia with sevoflurane on cerebral inflammatory response after cardiopulmonary resuscitation were studied using tissue samples from the cerebral cortex of pigs euthanized after 24 hours and employing quantitative RT-PCR and ELISA techniques. Results: Global cerebral ischemia following resuscitation resulted in significant upregulation of cerebral tissue inflammatory cytokine mRNA expression (mean +/- SD; interleukin (IL)-1beta 8.7 +/- 4.0, IL-6 4.3 +/- 2.6, IL-10 2.5 +/- 1.6, tumor necrosis factor (TNF)alpha 2.8 +/- 1.8, intercellular adhesion molecule-1 (ICAM-1) 4.0 +/- 1.9-fold compared with sham control) and IL-1beta protein concentration (1.9 +/- 0.6-fold compared with sham control). Hypothermia was associated with a significant (P <0.05 versus normothermia) reduction in cerebral inflammatory cytokine mRNA expression (IL-1beta 1.7 +/- 1.0, IL-6 2.2 +/- 1.1, IL-10 0.8 +/- 0.4, TNFalpha 1.1 +/- 0.6, ICAM-1 1.9 +/- 0.7-fold compared with sham control). These results were also confirmed for IL-1beta on protein level. Experimental settings employing hypothermia in combination with sevoflurane showed that the volatile anesthetic did not confer additional anti-inflammatory effects com-pared with hypothermia alone. Conclusions: Mild therapeutic hypothermia resulted in decreased expression of typical ce-rebral inflammatory mediators after cardiopulmonary resuscitation. This may confer, at least in part, neuroprotection following global cerebral ischemia and resuscitation.
Background: Mild therapeutic hypothermia following cardiac arrest is neuroprotective, but its effect on myocardial dysfunction that is a critical issue following resuscitation is not clear. This study sought to examine whether hypothermia and the combination of hypothermia and pharmacological postconditioning are cardioprotective in a model of cardiopulmonary resuscitation following acute myocardial ischemia. Methodology/Principal Findings: Thirty pigs (28–34 kg) were subjected to cardiac arrest following left anterior descending coronary artery ischemia. After 7 minutes of ventricular fibrillation and 2 minutes of basic life support, advanced cardiac life support was started according to the current AHA guidelines. After successful return of spontaneous circulation (n = 21), coronary perfusion was reestablished after 60 minutes of occlusion, and animals were randomized to either normothermia at 38°C, hypothermia at 33°C or hypothermia at 33°C combined with sevoflurane (each group n = 7) for 24 hours. The effects on cardiac damage especially on inflammation, apoptosis, and remodeling were studied using cellular and molecular approaches. Five animals were sham operated. Animals treated with hypothermia had lower troponin T levels (p<0.01), reduced infarct size (34±7 versus 57±12%; p<0.05) and improved left ventricular function compared to normothermia (p<0.05). Hypothermia was associated with a reduction in: (i) immune cell infiltration, (ii) apoptosis, (iii) IL-1beta and IL-6 mRNA up-regulation, and (iv) IL-1beta protein expression (p<0.05). Moreover, decreased matrix metalloproteinase-9 activity was detected in the ischemic myocardium after treatment with mild hypothermia. Sevoflurane conferred additional protective effects although statistic significance was not reached. Conclusions/Significance: Hypothermia reduced myocardial damage and dysfunction after cardiopulmonary resuscitation possible via a reduced rate of apoptosis and pro-inflammatory cytokine expression.
Background: Perioperative anaemia leads to impaired oxygen supply with a risk of vital organ ischaemia. In healthy and fit individuals, anaemia can be compensated by several mechanisms. Elderly patients, however, have less compensatory mechanisms because of multiple co-morbidities and age-related decline of functional reserves. The purpose of the study is to evaluate whether elderly surgical patients may benefit from a liberal red blood cell (RBC) transfusion strategy compared to a restrictive transfusion strategy.
Methods: The LIBERAL Trial is a prospective, randomized, multicentre, controlled clinical phase IV trial randomising 2470 elderly (≥ 70 years) patients undergoing intermediate- or high-risk non-cardiac surgery. Registered patients will be randomised only if Haemoglobin (Hb) reaches ≤9 g/dl during surgery or within 3 days after surgery either to the LIBERAL group (transfusion of a single RBC unit when Hb ≤ 9 g/dl with a target range for the post-transfusion Hb level of 9–10.5 g/dl) or the RESTRICTIVE group (transfusion of a single RBC unit when Hb ≤ 7.5 g/dl with a target range for the post-transfusion Hb level of 7.5–9 g/dl). The intervention per patient will be followed until hospital discharge or up to 30 days after surgery, whichever occurs first. The primary efficacy outcome is defined as a composite of all-cause mortality, acute myocardial infarction, acute ischaemic stroke, acute kidney injury (stage III), acute mesenteric ischaemia and acute peripheral vascular ischaemia within 90 days after surgery. Infections requiring iv antibiotics with re-hospitalisation are assessed as important secondary endpoint. The primary endpoint will be analysed by logistic regression adjusting for age, cancer surgery (y/n), type of surgery (intermediate- or high-risk), and incorporating centres as random effect.
Discussion: The LIBERAL-Trial will evaluate whether a liberal transfusion strategy reduces the occurrence of major adverse events after non-cardiac surgery in the geriatric population compared to a restrictive strategy within 90 days after surgery.
Trial registration: ClinicalTrials.gov (identifier: NCT03369210).
Background: The ability of stroke volume variation (SVV), pulse pressure variation (PPV) and global end-diastolic volume (GEDV) for prediction of fluid responsiveness in presence of pleural effusion is unknown. The aim of the present study was to challenge the ability of SVV, PPV and GEDV to predict fluid responsiveness in a porcine model with pleural effusions.
Methods: Pigs were studied at baseline and after fluid loading with 8 ml kg−1 6% hydroxyethyl starch. After withdrawal of 8 ml kg−1 blood and induction of pleural effusion up to 50 ml kg−1 on either side, measurements at baseline and after fluid loading were repeated. Cardiac output, stroke volume, central venous pressure (CVP) and pulmonary occlusion pressure (PAOP) were obtained by pulmonary thermodilution, whereas GEDV was determined by transpulmonary thermodilution. SVV and PPV were monitored continuously by pulse contour analysis.
Results: Pleural effusion was associated with significant changes in lung compliance, peak airway pressure and stroke volume in both responders and non-responders. At baseline, SVV, PPV and GEDV reliably predicted fluid responsiveness (area under the curve 0.85 (p<0.001), 0.88 (p<0.001), 0.77 (p = 0.007). After induction of pleural effusion the ability of SVV, PPV and GEDV to predict fluid responsiveness was well preserved and also PAOP was predictive. Threshold values for SVV and PPV increased in presence of pleural effusion.
Conclusions: In this porcine model, bilateral pleural effusion did not affect the ability of SVV, PPV and GEDV to predict fluid responsiveness.
BACKGROUND: Transient episodes of ischemia in a remote organ or tissue (remote ischemic preconditioning, RIPC) can attenuate myocardial injury. Myocardial damage is associated with tissue remodeling and the matrix metalloproteinases 2 and 9 (MMP-2/9) are crucially involved in these events. Here we investigated the effects of RIPC on the activities of heart tissue MMP-2/9 and their correlation with serum concentrations of cardiac troponin T (cTnT), a marker for myocardial damage.
METHODS: In cardiosurgical patients with cardiopulmonary bypass (CPB) RIPC was induced by four 5 minute cycles of upper limb ischemia/reperfusion. Cardiac tissue was obtained before as well as after CPB and serum cTnT concentrations were measured. Tissue derived from control patients (N = 17) with high cTnT concentrations (≥0.32 ng/ml) and RIPC patients (N = 18) with low cTnT (≤0.32 ng/ml) was subjected to gelatin zymography to quantify MMP-2/9 activities.
RESULTS: In cardiac biopsies obtained before CPB, activities of MMP-2/9 were attenuated in the RIPC group (MMP-2: Control, 1.13 ± 0.13 a.u.; RIPC, 0.71 ± 0.12 a.u.; P < 0.05. MMP-9: Control, 1.50 ± 0.16 a.u.; RIPC, 0.87 ± 0.14 a.u.; P < 0.01), while activities of the pro-MMPs were not altered (P > 0.05). In cardiac biopsies taken after CPB activities of pro- and active MMP-2/9 were not different between the groups (P > 0.05). Spearman's rank tests showed that MMP-2/9 activities in cardiac tissue obtained before CPB were positively correlated with postoperative cTnT serum levels (MMP-2, P = 0.016; MMP-9, P = 0.015).
CONCLUSIONS: Activities of MMP-2/9 in cardiac tissue obtained before CPB are attenuated by RIPC and are positively correlated with serum concentrations of cTnT. MMPs may represent potential targets for RIPC mediated cardioprotection.
TRIAL REGISTRATION: ClinicalTrials.gov identifier NCT00877305.
Uncalibrated semi-invasive continous monitoring of cardiac index (CI) has recently gained increasing interest. The aim of the present study was to compare the accuracy of CI determination based on arterial waveform analysis with transpulmonary thermodilution. Fifty patients scheduled for elective coronary surgery were studied after induction of anaesthesia and before and after cardiopulmonary bypass (CPB), respectively. Each patient was monitored with a central venous line, the PiCCO system, and the FloTrac/Vigileo-system. Measurements included CI derived by transpulmonary thermodilution and uncalibrated semi-invasive pulse contour analysis. Percentage changes of CI were calculated. There was a moderate, but significant correlation between pulse contour CI and thermodilution CI both before (r(2) = 0.72, P < 0.0001) and after (r(2) = 0.62, P < 0.0001) CPB, with a percentage error of 31% and 25%, respectively. Changes in pulse contour CI showed a significant correlation with changes in thermodilution CI both before (r(2) = 0.52, P < 0.0001) and after (r(2) = 0.67, P < 0.0001) CPB. Our findings demonstrated that uncalibrated semi-invasive monitoring system was able to reliably measure CI compared with transpulmonary thermodilution in patients undergoing elective coronary surgery. Furthermore, the semi-invasive monitoring device was able to track haemodynamic changes and trends.