Refine
Language
- English (6)
Has Fulltext
- yes (6)
Is part of the Bibliography
- no (6)
Institute
- Biowissenschaften (2)
- Ernst Strüngmann Institut (2)
- Physik (2)
- ELEMENTS (1)
- Medizin (1)
It is long known that Kasugamycin inhibits translation of canonical transcripts containing a 5’-UTR with a Shine Dalgarno (SD) motif, but not that of leaderless transcripts. To gain a global overview of the influence of Kasugamycin on translation efficiencies, the changes of the translatome of Escherichia coli induced by a 10 minutes Kasugamycin treatment were quantified. The effect of Kasugamycin differed widely, 102 transcripts were at least twofold more sensitive to Kasugamycin than average, and 137 transcripts were at least twofold more resistant, and there was a more than 100-fold difference between the most resistant and the most sensitive transcript. The 5’-ends of 19 transcripts were determined from treated and untreated cultures, but Kasugamycin resistance did neither correlate with the presence or absence of a SD motif, nor with differences in 5’-UTR lengths or GC content. RNA Structure Logos were generated for the 102 Kasugamycin-sensitive and for the 137 resistant transcripts. For both groups a short Shine Dalgarno (SD) motif was retrieved, but no specific motifs associated with resistance or sensitivity could be found. Notably, this was also true for the region -3 to -1 upstream of the start codon and the presence of an extended SD motif, which had been proposed to result in Kasugamycin resistance. Comparison of the translatome results with the database RegulonDB showed that the transcript with the highest resistance was leaderless, but no further leaderless transcripts were among the resistant transcripts. Unexpectedly, it was found that translational coupling might be a novel feature that is associated with Kasugamycin resistance. Taken together, Kasugamycin has a profound effect on translational efficiencies of E. coli transcripts, but the mechanism of action is different than previously described.
The proton drip-line nucleus 17Ne is investigated experimentally in order to determine its two-proton halo character. A fully exclusive measurement of the 17Ne(p, 2p)16F∗ →15O+p quasi-free one-proton knockout reaction has been performed at GSI at around 500 MeV/nucleon beam energy. All particles resulting from the scattering process have been detected. The relevant reconstructed quantities are the angles of the two protons scattered in quasi-elastic kinematics, the decay of 16F into 15O (including γ decays from excited states) and a proton, as well as the 15O+p relative-energy spectrum and the 16F momentum distributions. The latter two quantities allow an independent and consistent determination of the fractions of l = 0 and l = 2 motion of the valence protons in 17Ne. With a resulting relatively small l = 0 component of only around 35(3)%, it is concluded that 17Ne exhibits a rather modest halo character only. The quantitative agreement of the two values deduced from the energy spectrum and the momentum distributions supports the theoretical treatment of the calculation of momentum distributions after quasi-free knockout reactions at high energies by taking into account distortions based on the Glauber theory. Moreover, the experimental data allow the separation of valence-proton knockout and knockout from the 15O core. The latter process contributes with 11.8(3.1) mb around 40% to the total proton-knockout cross section of 30.3(2.3) mb, which explains previously reported contradicting conclusions derived from inclusive cross sections.
The neural mechanisms that unfold when humans form a large group defined by an overarching context, such as audiences in theater or sports, are largely unknown and unexplored. This is mainly due to the lack of availability of a scalable system that can record the brain activity from a significantly large portion of such an audience simultaneously. Although the technology for such a system has been readily available for a long time, the high cost as well as the large overhead in human resources and logistic planning have prohibited the development of such a system. However, during the recent years reduction in technology costs and size have led to the emergence of low-cost, consumer-oriented EEG systems, developed primarily for recreational use. Here by combining such a low-cost EEG system with other off-the-shelve hardware and tailor-made software, we develop in the lab and test in a cinema such a scalable EEG hyper-scanning system. The system has a robust and stable performance and achieves accurate unambiguous alignment of the recorded data of the different EEG headsets. These characteristics combined with small preparation time and low-cost make it an ideal candidate for recording large portions of audiences.
Research on psychopathy has so far been largely limited to the investigation of high-level processes, such as emotion perception and regulation. In the present work, we investigate whether psychopathy has an effect on the estimation of fundamental physical parameters, which are computed in the brain during early stages of sensory processing. We employed a simple task in which participants had to estimate their interpersonal distance from a moving avatar and stop it at a given distance. The face expression of the avatars were positive, negative, or neutral. Participants carried out the task online on their home computers. We measured the psychopathy level via a self-report questionnaire. Regardless of the degree of psychopathy, the facial expression of the avatars showed no effect on distance estimation. Our results show that individuals with a high degree of psychopathy underestimate distance of approaching avatars significantly less (let the avatar approach them significantly closer) than did participants with a lesser degree of psychopathy. Moreover, participants who scored high in Self-Centered Impulsivity underestimate the distance to approaching avatars significantly less (let the avatar approach closer) than participants with a low score. Distance estimation is considered an automatic process performed at early stages of visual processing. Therefore, our results imply that psychopathy affects basic early sensory processes, such as feature extraction, in the visual cortex.
We measured the Coulomb dissociation of 16O into 4He and 12C at the R3B setup in a first campaign within FAIR Phase 0 at GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt. The goal was to improve the accuracy of the experimental data for the 12C(α,γ)16O fusion reaction and to reach lower center-ofmass energies than measured so far.
The experiment required beam intensities of 109 16O ions per second at an energy of 500 MeV/nucleon. The rare case of Coulomb breakup into 12C and 4He posed another challenge: The magnetic rigidities of the particles are so close because of the same mass-to-charge-number ratio A/Z = 2 for 16O, 12C and 4He. Hence, radical changes of the R3B setup were necessary. All detectors had slits to allow the passage of the unreacted 16O ions, while 4He and 12C would hit the detectors' active areas depending on the scattering angle and their relative energies. We developed and built detectors based on organic scintillators to track and identify the reaction products with sufficient precision.
The haloarchaeon Haloferax volcanii was shown to contain 145 intergenic and 45 antisense sRNAs. In a comprehensive approach to unravel various biological roles of haloarchaeal sRNAs in vivo, 27 sRNA genes were selected and deletion mutants were generated. The phenotypes of these mutants were compared to that of the parent strain under ten different conditions, i.e. growth on four different carbon sources, growth at three different salt concentrations, and application of four different stress conditions. In addition, cell morphologies in exponential and stationary phase were observed. Furthermore, swarming of 17 mutants was analyzed. 24 of the 27 mutants exhibited a difference from the parent strain under at least one condition, revealing that haloarchaeal sRNAs are involved in metabolic regulation, growth under extreme conditions, regulation of morphology and behavior, and stress adaptation. Notably, 7 deletion mutants showed a gain of function phenotype, which has not yet been described for any other prokaryotic sRNA gene deletion mutant. Comparison of the transcriptomes of one sRNA gene deletion mutant and the parent strain led to the identification of differentially expressed genes. Genes for flagellins and chemotaxis were up-regulated in the mutant, in accordance with its gain of function swarming phenotype. While the deletion mutant analysis underscored that haloarchaeal sRNAs are involved in many biological functions, the degree of conservation is extremely low. Only 3 of the 27 genes are conserved in more than 10 haloarchaeal species. 22 of the 27 genes are confined to H. volcanii, indicating a fast evolution of haloarchaeal sRNA genes.