Refine
Document Type
- diplomthesis (1)
- Doctoral Thesis (1)
Language
- German (2)
Has Fulltext
- yes (2)
Is part of the Bibliography
- no (2)
Institute
- Physik (2)
Im Rahmen dieser Arbeit wird ein Experiment vorgestellt, mit dem es möglich ist, die Wechselwirkungen zwischen Elektronen in der Gegenwart eines extrem starken Laserfeldes zu untersuchen. Diese resultieren aus der nichtsequentiellen Multiphoton- Doppelionisation von Neon in einem starken elektrischen Feld, das durch einen Hochleistungslaser erzeugt wird. Mit Hilfe der COLTRIMS-Technologie ist es möglich die entstandenen Teilchen nachzuweisen und die Impulskomponenten zu bestimmen. Bei dieser Technologie handelt es sich um ein „Mikroskop“, das atomphysikalische Prozesse vollständig differntiell beobachtet. Die bei der Doppelionisation entstandenen Elektronen und das Rückstossion werden mittels eines schwachen elektrischen Feldes auf orts- und zeitaufgelöste Multichannelplate-Detektoren mit Delaylineauslese geleitet. Zusätzlich wird noch ein magnetisches Feld überlagert. Aus dem Auftreffort und der Flugzeit der Teilchen können die Impulse bestimmt werden. Es ist erstmals möglich die Impulskomponenten der drei Raumrichtungen für alle an der Ionisation beteiligten Teilchen mit hinreichend guter Auflösung zu bestimmen. Es können vollständige differentielle Winkelverteilungen erzielt werden. Damit gelingt es, ein kinematisch vollständiges Experiment zu realisieren. Die Elektronen werden bevorzugt in Richtung des Polarisationsvektors des Laserlichtes emittiert. Aufgrund der guten Impulsauflösung ist es jetzt möglich, die Richtung senkrecht zur Polarisation zu untersuchen und die Erkenntnisse in Bezug zueinander zu bringen. Das der nichtsequentiellen Doppelionisation zu grunde liegende sehr anschauliche Modell ist der „Rescattering-Prozess“: Das Laserfeld koppelt an das Coulombpotential des Atoms und verformt es derart, dass ein Elektron die effektive Potentialbarriere überqueren oder durch diese durchtunneln kann. Dieses zuerst befreite Elektron wird durch das oszillierende elektromagnetische Feld zunächst vom Ursprungsion fortgetrieben. Kehrt aber die Phase des Laserfeldes um, wird es zurück zum Ion beschleunigt, nimmt dabei Energie aus dem Feld auf und kann durch Elektron-Elektron-Stossionisation ein zweites Elektron aus dem Atom ionisieren oder es können kurzzeitige Anregungszustände erzeugt werden, die später feldionisiert werden. Dieses Modell wurde schon durch ein Vielzahl von Experimenten verifiziert. Gleichzeitig wirft es aber auch Fragen auf: Wie sind die Elektron-Elektron-Korrelationen zu erklären? Wie hängt der Longitudinal- mit dem Transversalimpuls zusammen? Welche Ionisationsmechanismen treten wann auf? Zusammenfassend kann man sagen, dass ein Experiment präsentiert wird, das zur Erfoschung von Korrelationseffekten bei Multiphoton-Ionisation beiträgt und sehr detaillierte Einblicke in die Welt der Laseratomphysik gewährt. Die Daten belegen eindeutig, dass eine Messung der korrelierten Impulse mehrerer Teilchen in einem Laserfeld eine Zeitmessung mit einer Auflösung weit unter einer Femtosekunde ermöglicht. Das beobachtete Ein- und Ausschalten der Elektronenabstossung, je nach der über die Longitudinal-Impulskorrelation gemessenen Verzögerungszeit, zeigt die Möglichkeit „Attosekunden Physik ohne Attosekunden-Pulse“ zu betreiben.