Refine
Language
- English (25)
Has Fulltext
- yes (25)
Is part of the Bibliography
- no (25)
Keywords
- 140Ce (1)
- AGB star (1)
- Electromagnetic transitions (1)
- MACS (1)
- Models & methods for nuclear reactions (1)
- Neutron physics (1)
- Nuclear reactions (1)
- Nucleosynthesis-Star (1)
- Radiative capture (1)
- Resonance reactions (1)
Institute
- Physik (24)
- Biochemie, Chemie und Pharmazie (1)
The neutron capture cross section of 154Gd was measured from 1 eV to 300 keV in the experimental area located 185 m from the CERN n_TOF neutron spallation source, using a metallic sample of gadolinium, enriched to 67% in 154Gd. The capture measurement, performed with four C6D6 scintillation detectors, has been complemented by a transmission measurement performed at the GELINA time-of-flight facility (JRC-Geel), thus minimising the uncertainty related to sample composition. An accurate Maxwellian averaged capture cross section (MACS) was deduced over the temperature range of interest for s process nucleosynthesis modelling. We report a value of 880(50) mb for the MACS at kT = 30 keV, significantly lower compared to values available in literature. The new adopted 154Gd(n,γ) cross section reduces the discrepancy between observed and calculated solar s-only isotopic abundances predicted by s-process nucleosynthesis models.
Presolar grains and their isotopic compositions provide valuable constraints to AGB star nucleosynthesis. However, there is a sample of O- and Al-rich dust, known as group 2 oxide grains, whose origin is difficult to address. On the one hand, the 17O/16O isotopic ratios shown by those grains are similar to the ones observed in low-mass red giant stars. On the other hand, their large 18O depletion and 26Al enrichment are challenging to account for. Two different classes of AGB stars have been proposed as progenitors of this kind of stellar dust: intermediate mass AGBs with hot bottom burning, or low mass AGBs where deep mixing is at play. Our models of low-mass AGB stars with a bottom-up deep mixing are shown to be likely progenitors of group 2 grains, reproducing together the 17O/16O, 18O/16O and 26Al/27Al values found in those grains and being less sensitive to nuclear physics inputs than our intermediate-mass models with hot bottom burning.
Asymptotic giant branch (AGB) stars are thought to be among the most important sources of fluorine in our Galaxy. While observations and theory agree at close-to-solar metallicity, stellar models overestimate fluorine production in comparison to heavy elements at lower metallicities. We present predictions for 19F abundance for a set of AGB models with various masses and metallicities, in which magnetic buoyancy induces the formation of the 13C neutron source (the so-called 13C pocket). In our new models, fluorine is mostly created as a consequence of secondary 14N nucleosynthesis during convective thermal pulses, with a minor contribution from the 14N existing in the 13C pocket zone. As a result, AGB stellar models with magnetic-buoyancyinduced mixing show low 19F surface abundances which agree with fluorine spectroscopic observations at both low and near-solar metallicity.
An accurate measurement of the 140Ce(n,γ) energy-dependent cross-section was performed at the n_TOF facility at CERN. This cross-section is of great importance because it represents a bottleneck for the s-process nucleosynthesis and determines to a large extent the cerium abundance in stars. The measurement was motivated by the significant difference between the cerium abundance measured in globular clusters and the value predicted by theoretical stellar models. This discrepancy can be ascribed to an overestimation of the 140Ce capture cross-section due to a lack of accurate nuclear data. For this measurement, we used a sample of cerium oxide enriched in 140Ce to 99.4%. The experimental apparatus consisted of four deuterated benzene liquid scintillator detectors, which allowed us to overcome the difficulties present in the previous measurements, thanks to their very low neutron sensitivity. The accurate analysis of the p-wave resonances and the calculation of their average parameters are fundamental to improve the evaluation of the 140Ce Maxwellian-averaged cross-section.
Neutron capture on 241Am plays an important role in the nuclear energy production and also provides valuable information for the improvement of nuclear models and the statistical interpretation of the nuclear properties. A new experiment to measure the 241Am(n, γ) cross section in the thermal region and the first few resonances below 10 eV has been carried out at EAR2 of the n_TOF facility at CERN. Three neutron-insensitive C6D6 detectors have been used to measure the neutron-capture gamma cascade as a function of the neutron time of flight, and then deduce the neutron capture yield. Preliminary results will be presented and compared with previously obtained results at the same facility in EAR1. In EAR1 the gamma-ray background at thermal energies was about 90% of the signal while in EAR2 is up to a 25 factor much more favorable signal to noise ratio. We also extended the low energy limit down to subthermal energies. This measurement will allow a comparison with neutron capture measurements conducted at reactors and using a different experimental technique.
Background: The photon strength functions (PSFs) and nuclear level density (NLD) are key ingredients for calculation of the photon interaction with nuclei, in particular the reaction cross sections. These cross sections are important especially in nuclear astrophysics and in the development of advanced nuclear technologies.
Purpose: The role of the scissors mode in the M1 PSF of (well-deformed) actinides was investigated by several experimental techniques. The analyses of different experiments result in significant differences, especially on the strength of the mode. The shape of the low-energy tail of the giant electric dipole resonance is uncertain as well. In particular, some works proposed a presence of the E1 pygmy resonance just above 7 MeV. Because of these inconsistencies additional information on PSFs in this region is of great interest.
Methods: The γ-ray spectra from neutron-capture reactions on the 234U, 236 U, and 238 U nuclei have been measured with the total absorption calorimeter of the n_TOF facility at CERN. The background-corrected sum-energy and multi-step-cascade spectra were extracted for several isolated s-wave resonances up to about 140 eV.
Results: The experimental spectra were compared to statistical model predictions coming from a large selection of models of photon strength functions and nuclear level density. No combination of PSF and NLD models from literature is able to globally describe our spectra. After extensive search we were able to find model combinations with modified generalized Lorentzian (MGLO) E1 PSF, which match the experimental spectra as well as the total radiative widths.
Conclusions: The constant temperature energy dependence is favored for a NLD. The tail of giant electric dipole resonance is well described by the MGLO model of the E1 PSF with no hint of pygmy resonance. The M1 PSF must contain a very strong, relatively wide, and likely double-resonance scissors mode. The mode is responsible for about a half of the total radiative width of neutron resonances and significantly affects the radiative cross section.
Presolar grain isotopic ratios as constraints to nuclear physics inputs for s-process calculations
(2023)
The isotopic abundances in presolar SiC grains of AGB origin provide important and precise constraints to those star nucleosynthesis models. By comparing the values of the s-element abundances resulting from calculations with the ones measured in these dust grains, it turns out that new measurements of weak-interaction rates in ionized plasmas, as well as of neutron-capture cross sections, are needed, especially in the region near the neutron magic numbers 50 and 82.
The (n, γ) cross sections of the gadolinium isotopes play an important role in the study of the stellar nucleosynthesis. In particular, among the isotopes heavier than Fe, 154Gd together with 152Gd have the peculiarity to be mainly produced by the slow capture process, the so-called s-process, since they are shielded against the β-decay chains from the r-process region by their stable samarium isobars. Such a quasi pure s-process origin makes them crucial for testing the robustness of stellar models in galactic chemical evolution (GCE). According to recent models, the 154Gd and 152Gd abundances are expected to be 15-20% lower than the reference un-branched s-process 150Sm isotope. The close correlation between stellar abundances and neutron capture cross sections prompted for an accurate measurement of 154Gd cross section in order to reduce the uncertainty attributable to nuclear physics input and eventually rule out one of the possible causes of present discrepancies between observation and model predictions. To this end, the neutron capture cross section of 154Gd was measured in a wide neutron energy range (from thermal up to some keV) with high resolution in the first experimental area of the neutron time-of-flight facility n_TOF (EAR1) at CERN. In this contribution, after a brief description of the motivation and of the experimental setup used in the measurement, the preliminary results of the 154Gd neutron capture reaction as well as their astrophysical implications are presented.
Accurate neutron capture cross section data for minor actinides (MAs) are required to estimate the production and transmutation rates of MAs in light water reactors with a high burnup, critical fast reactors like Gen-IV systems and other innovative reactor systems such as accelerator driven systems (ADS). Capture reactions of 244Cm open the path for the formation of heavier Cm isotopes and of heavier elements such as Bk and Cf. In addition, 244Cm shares nearly 50% of the total actinide decay heat in irradiated reactor fuels with a high burnup, even after three years of cooling.
Experimental data for this isotope are very scarce due to the difficulties of providing isotopically enriched samples and because the high intrinsic activity of the samples requires the use of neutron facilities with high instantaneous flux. The only two previous experimental data sets for this neutron capture cross section have been obtained in 1969 using a nuclear explosion and, more recently, at J-PARC in 2010. The neutron capture cross sections have been measured at n_TOF with the same samples that the previous experiments in J-PARC. The samples were measured at n_TOF Experimental Area 2 (EAR-2) with three C6D6 detectors and also in Experimental Area 1 (EAR-1) with the Total Absorption Calorimeter (TAC). Preliminary results assessing the quality and limitations of these new experimental datasets are presented for the experiments in both areas. Preliminary yields of both measurements will be compared with evaluated libraries for the first time.