Refine
Has Fulltext
- yes (538)
Is part of the Bibliography
- no (538)
Keywords
- e +-e − Experiments (20)
- Branching fraction (14)
- BESIII (13)
- Particle and Resonance Production (9)
- Charm Physics (7)
- Quarkonium (6)
- Spectroscopy (6)
- QCD (5)
- Exotics (4)
- Lepton colliders (4)
Institute
- Physik (533)
- Frankfurt Institute for Advanced Studies (FIAS) (4)
- Informatik (4)
- Medizin (2)
- Extern (1)
X-Ray as well as electron diffraction are powerful tools for structure determination of molecules. Studies on randomly oriented molecules in the gas phase address cases in which molecular crystals cannot be generated or the interaction-free molecular structure is to be addressed. Such studies usually yield partial geometrical information, such as interatomic distances. Here, we present a complementary approach, which allows obtaining insight into the structure, handedness, and even detailed geometrical features of molecules in the gas phase. Our approach combines Coulomb explosion imaging, the information that is encoded in the molecular-frame diffraction pattern of core–shell photoelectrons and ab initio computations. Using a loop-like analysis scheme, we are able to deduce specific molecular coordinates with sensitivity even to the handedness of chiral molecules and the positions of individual atoms, e.g., protons.
X-ray as well as electron diffraction are powerful tools for structure determination of molecules. Studies on randomly oriented molecules in the gas-phase address cases in which molecular crystals cannot be generated or the interaction-free molecular structure is to be addressed. Such studies usually yield partial geometrical information, such as interatomic distances. Here, we present a complementary approach, which allows obtaining insight to the structure, handedness and even detailed geometrical features of molecules in the gas phase. Our approach combines Coulomb explosion imaging, the information that is encoded in the molecular frame diffraction pattern of core-shell photoelectrons and ab initio computations. Using a loop-like analysis scheme we are able to deduce specific molecular coordinates with sensitivity even to the handedness of chiral molecules and the positions of individual atoms, as, e.g., protons.
Using 448.1 × 106 ψ(3686) decays collected with the BESIII detector at the BEPCII e+e− storage rings, the branching fractions and angular distributions of the decays χcJ → Ξ−Ξ¯¯¯¯+ and Ξ0Ξ¯¯¯¯0 (J = 0, 1, 2) are measured based on a partial-reconstruction technique. The decays χc1 → Ξ0Ξ¯¯¯¯0 and χc2 → Ξ0Ξ¯¯¯¯0 are observed for the first time with statistical significances of 7σ and 15σ, respectively. The results of this analysis are in good agreement with previous measurements and have significantly improved precision.
Using data samples collected with the BESIII detector operating at the BEPCII storage ring at center-of-mass energies from 4.178 to 4.600 GeV, we study the process eþe− → π0Xð3872Þγ and search for Zcð4020Þ0 → Xð3872Þγ. We find no significant signal and set upper limits on σðeþe− → π0Xð3872ÞγÞ · BðXð3872Þ → πþπ−J=ψÞ and σðeþe− → π0Zcð4020Þ0Þ · BðZcð4020Þ0 → Xð3872ÞγÞ · BðXð3872Þ → πþπ−J=ψÞ for each energy point at 90% confidence level, which is of the order of several tenths pb.
The electromagnetic process is studied with the initial-state-radiation technique using 7.5 fb−1 of data collected by the BESIII experiment at seven energy points from 3.773 to 4.600 GeV. The Born cross section and the effective form factor of the proton are measured from the production threshold to 3.0 GeV/ using the invariant-mass spectrum. The ratio of electric and magnetic form factors of the proton is determined from the analysis of the proton-helicity angular distribution.
Relative fractions and phases of the intermediate decays are determined. With the detection efficiency estimated by the results of the amplitude analysis, the branching fraction of Dþ s → K−Kþπþπ0 decay is measured to be ð5.42 0.10stat 0.17systÞ%.
Using 7.33 fb−1 of e+e− collision data collected by the BESIII detector at center-of-mass energies between 4.128 and 4.226~GeV, we observe for the first time the decay D±s→ωπ±η with a statistical significance of 7.6σ. The measured branching fraction of this decay is (0.54±0.12±0.04)%, where the first uncertainty is statistical and the second is systematic.
Background: International travel is a major driver of the introduction and spread of SARS- CoV-2. Aim: To investigate SARS-CoV-2 genetic diversity in the region of a major transport hub in Germany, we characterized the viral sequence diversity of the SARS-CoV-2 variants circulating in Frankfurt am Main, the city with the largest airport in Germany, from the end of October to the end of December 2020. Methods: In total, we recovered 136 SARS-CoV-2 genomes from nasopharyngeal swab samples. We isolated 104 isolates that were grown in cell culture and RNA from the recovered viruses and subjected them to full-genome sequence analysis. In addition, 32 nasopharyngeal swab samples were directly sequenced. Results and conclusion: We found 28 different lineages of SARS- CoV-2 circulating during the study period, including the variant of concern B.1.1.7 (∆69/70, N501Y). Six of the lineages had not previously been observed in Germany. We detected the spike protein (S) deletion ∆69/∆70 in 15% of all sequences, a four base pair (bp) deletion (in 2.9% of sequences) and a single bp deletion (in 0.7% of sequences) in ORF3a, leading to ORF3a truncations. In four sequences (2.9%), an amino acid deletion at position 210 in S was identified. In a single sample (0.7%), both a 9 bp deletion in ORF1ab and a 7 bp deletion in ORF7a were identified. One sequence in lineage B.1.1.70 had an N501Y substitution while lacking the ∆69/70 in S. The high diversity of sequences observed over two months in Frankfurt am Main highlights the persisting need for continuous SARS-CoV-2 surveillance using full-genome sequencing, particularly in cities with international airport connections.
The process 𝑒+𝑒−→Σ+¯Σ− is studied from threshold up to 3.04 GeV/𝑐2 via the initial-state radiation technique using data with an integrated luminosity of 12.0 fb−1, collected at center-of-mass energies between 3.773 and 4.258 GeV with the BESIII detector at the BEPCII collider. The pair production cross sections and the effective form factors of Σ are measured in eleven Σ+¯Σ− invariant mass intervals from threshold to 3.04 GeV/𝑐2. The results are consistent with the previous results from Belle and BESIII. Furthermore, the branching fractions of the decays 𝐽/𝜓→Σ+¯Σ− and 𝜓(3686)→Σ+¯Σ− are determined and the obtained results are consistent with the previous results of BESIII.