Refine
Document Type
- Article (2)
Language
- English (2)
Has Fulltext
- yes (2)
Is part of the Bibliography
- no (2)
Keywords
- Coin tossing (1)
- Concordance (1)
- Discordance (1)
- Maximum length of association (1)
- integrated series with drift (1)
- large N asymptotics (1)
- single-equations (1)
Institute
We consider a class of panel tests of the null hypothesis of no cointegration and cointegration. All tests under investigation rely on single-equations estimated by least squares, and they may be residual-based or not. We focus on test statistics computed from regressions with intercept only (i.e., without detrending) and with at least one of the regressors (integrated of order 1) being dominated by a linear time trend. In such a setting, often encountered in practice, the limiting distributions and critical values provided for and applied with the situation “with intercept only” are not correct. It is demonstrated that their usage results in size distortions growing with the panel size N. Moreover, we show which are the appropriate distributions, and how correct critical values can be obtained from the literature.
Consider two independent random walks. By chance, there will be spells of association between them where the two processes move in the same direction, or in opposite direction. We compute the probabilities of the length of the longest spell of such random association for a given sample size, and discuss measures like mean and mode of the exact distributions. We observe that long spells (relative to small sample sizes) of random association occur frequently, which explains why nonsense correlation between short independent random walks is the rule rather than the exception. The exact figures are compared with approximations. Our finite sample analysis as well as the approximations rely on two older results popularized by Révész (Stat Pap 31:95–101, 1990, Statistical Papers). Moreover, we consider spells of association between correlated random walks. Approximate probabilities are compared with finite sample Monte Carlo results.