Refine
Document Type
- Article (1)
- Doctoral Thesis (1)
Has Fulltext
- yes (2)
Is part of the Bibliography
- no (2)
Institute
Kutane T-Zell-Lymphome (CTCL) stellen eine heterogene Gruppe von Lymphomen dar, die durch maligne, die Haut infiltrierende T-Zellen gekennzeichnet sind. Die häufigsten CTCL sind Mycosis Fungoides (MF) und die leukämische Variante das Sézary Syndrom (SS). Bei MF kommt es zur Ausbildung von sogenannten Patches, Plaques und kutanen Tumoren und in späteren Stadien kann es auch zu einem Befall des Blutes kommen. Bei SS handelt es sich um eines der aggressivsten CTCL, das durch das Auftreten von Erythroderma und einer hohen Zahl im Blut zirkulierender maligner Zellen gekennzeichnet ist. Die genauen molekularen Ursachen für die Entartung sind bis heute nicht aufgeklärt. Bestehende Therapien können nur die Symptome lindern, aber die Krankheit nicht vollständig heilen. Daher ist die Entwicklung neuer Therapien unerlässlich, was durch die Erforschung der molekularen Signalwege in den malignen Zellen möglich wird. So kann die Ursache der Entartung aufgeklärt werden und neue Angriffspunkte für Therapien identifiziert werden. Die Charakterisierung verschiedener CTCL Zelllinien in dieser Arbeit bestätigte den Phänotyp der Tumorzellen als aktivierte T-Helferzellen und lieferte auch Hinweise auf einen Phänotyp regulatorischer T-Zellen. Es konnte eine Aktivierung des NF-κB- und Interferon-Signalweges, AP-1- und cAMP-vermittelter Signalwege, sowie der MAPKinase p38 und STAT5 beobachtet werden. Diese Moleküle zeichnen sich daher als mögliche Angriffspunkte für die Entwicklung einer neuen Therapie ab. Der Nachweis einer VEGF Expression, sowie von RANTES und TIMP-1, lieferte Hinweise auf die Aktivierung Angiogenese-vermittelnder Signalwege. Die Charakterisierung des PI3K/Akt- und mTOR-Signalweges in CTCL durch Versuche mit dem mTOR Inhibitor Rapamycin bestätigte die Bedeutung von Angiogenese bei CTCL. Rapamycin zeigte sowohl in vitro als auch in vivo in einem Mausmodell für MF einen antitumoralen Effekt, was seine Anwendbarkeit als neues Therapeutikum für CTCL zeigt. Ein weiterer Ansatzpunkt ist der Apoptose Signalweg, der in CTCL gestört ist, wodurch es zu einer Resistenz gegenüber Apoptose-induzierender Stimuli kommt. Bei Versuchen mit dem Immunmodulator AS101 wurde die Produktion intrazellulärer freier Sauerstoffradikale (ROS) erhöht, wodurch Apoptose in den malignen Zellen induziert werden konnte. In vivo Versuche bestätigten einen antitumoralen Effekt von AS101 und identifizierten es als potentielles neues Therapeutikum für CTCL. Ziel bei der Entwicklung neuer Therapien ist es, eine möglichst spezifische Wirkung auf die Tumorzellen zu erhalten, wodurch Immuntherapien in den letzten Jahren immer mehr an Bedeutung gewannen. Daher wurden auch zwei immuntherapeutische Ansätze für eine Behandlung von CTCL untersucht. Zytotoxische T-Zellen mit einem chimären CD30-spezifischen T-Zellrezeptor (TCR) zeigen in vitro eine zytotoxische Aktivität gegen CTCL Zellen, der aber in vivo nicht bestätigt werden konnte. Ein weiterer unspezifischer immuntherapeutischer Ansatz basiert auf der Natürlichen Killer (NK) – Zelllinie NK-92, die alle Eigenschaften aktivierter NK-Zellen aufweist und eine generelle antitumorale Aktivität besitzt. Diese Zellen zeigten eine hohe zytotoxische Aktivität gegen CTCL Zellen, die unabhängig von den drei aktivierenden Rezeptoren NKp30, NKp46 und NKG2D ist. Die Versuche zeigten somit, dass sich NK-92 Zellen für eine Therapie von CTCL eignen. Zusammenfassend wurden Signalwege identifiziert, deren Inhibition einen therapeutischen Effekt erwarten lassen würden und zwei bereits für andere Indikationen zugelassene Substanzen als potentielle Therapeutika für CTCL identifiziert. Zusätzlich wurde auch ein Immuntherapeutikum in vitro als erfolgversprechend getestet.
Background: The APOBEC3G protein represents a novel innate defense mechanism against retroviral infection. It facilitates the deamination of the cytosine residues in the single stranded cDNA intermediate during early steps of retroviral infection. Most poxvirus genomes are relatively A/T-rich, which may indicate APOBEC3G-induced mutational pressure. In addition, poxviruses replicate exclusively in the cytoplasm where APOBEC3G is located. It was therefore tempting to analyze whether vaccinia virus replication is affected by APOBEC3G.
Results: The replication of vaccinia virus, a prototype poxvirus, was not, however, inhibited in APOBEC3G-expressing cells, nor did other members of the APOBEC3 family alter vaccinia virus replication. HIV counteracts APOBEC3G by inducing its degradation. However, Western blot analysis showed that the levels of APOBEC3G protein were not affected by vaccinia virus infection.
Conclusion: The data indicate that APOBEC3G is not a restriction factor for vaccinia virus replication nor is vaccinia virus able to degrade APOBEC3G.