Refine
Document Type
- Article (6)
Language
- English (6)
Has Fulltext
- yes (6)
Is part of the Bibliography
- no (6)
Keywords
- COVID-19 (3)
- SARS-CoV-2 (2)
- Advanced stage (1)
- Biomarkers (1)
- COVID 19 (1)
- Cardiovascular disease risk (1)
- Cardiovascular diseases (1)
- Complicated stage (1)
- First-line regimen (1)
- HIV (1)
Institute
- Medizin (6)
(1) Background: The aim of our study was to identify specific risk factors for fatal outcome in critically ill COVID-19 patients. (2) Methods: Our data set consisted of 840 patients enclosed in the LEOSS registry. Using lasso regression for variable selection, a multifactorial logistic regression model was fitted to the response variable survival. Specific risk factors and their odds ratios were derived. A nomogram was developed as a graphical representation of the model. (3) Results: 14 variables were identified as independent factors contributing to the risk of death for critically ill COVID-19 patients: age (OR 1.08, CI 1.06–1.10), cardiovascular disease (OR 1.64, CI 1.06–2.55), pulmonary disease (OR 1.87, CI 1.16–3.03), baseline Statin treatment (0.54, CI 0.33–0.87), oxygen saturation (unit = 1%, OR 0.94, CI 0.92–0.96), leukocytes (unit 1000/μL, OR 1.04, CI 1.01–1.07), lymphocytes (unit 100/μL, OR 0.96, CI 0.94–0.99), platelets (unit 100,000/μL, OR 0.70, CI 0.62–0.80), procalcitonin (unit ng/mL, OR 1.11, CI 1.05–1.18), kidney failure (OR 1.68, CI 1.05–2.70), congestive heart failure (OR 2.62, CI 1.11–6.21), severe liver failure (OR 4.93, CI 1.94–12.52), and a quick SOFA score of 3 (OR 1.78, CI 1.14–2.78). The nomogram graphically displays the importance of these 14 factors for mortality. (4) Conclusions: There are risk factors that are specific to the subpopulation of critically ill COVID-19 patients.
Purpose: While more advanced COVID-19 necessitates medical interventions and hospitalization, patients with mild COVID-19 do not require this. Identifying patients at risk of progressing to advanced COVID-19 might guide treatment decisions, particularly for better prioritizing patients in need for hospitalization.
Methods: We developed a machine learning-based predictor for deriving a clinical score identifying patients with asymptomatic/mild COVID-19 at risk of progressing to advanced COVID-19. Clinical data from SARS-CoV-2 positive patients from the multicenter Lean European Open Survey on SARS-CoV-2 Infected Patients (LEOSS) were used for discovery (2020-03-16 to 2020-07-14) and validation (data from 2020-07-15 to 2021-02-16).
Results: The LEOSS dataset contains 473 baseline patient parameters measured at the first patient contact. After training the predictor model on a training dataset comprising 1233 patients, 20 of the 473 parameters were selected for the predictor model. From the predictor model, we delineated a composite predictive score (SACOV-19, Score for the prediction of an Advanced stage of COVID-19) with eleven variables. In the validation cohort (n = 2264 patients), we observed good prediction performance with an area under the curve (AUC) of 0.73 ± 0.01. Besides temperature, age, body mass index and smoking habit, variables indicating pulmonary involvement (respiration rate, oxygen saturation, dyspnea), inflammation (CRP, LDH, lymphocyte counts), and acute kidney injury at diagnosis were identified. For better interpretability, the predictor was translated into a web interface.
Conclusion: We present a machine learning-based predictor model and a clinical score for identifying patients at risk of developing advanced COVID-19.
Aims: Patients with cardiovascular comorbidities have a significantly increased risk for a critical course of COVID-19. As the SARS-CoV2 virus enters cells via the angiotensin-converting enzyme receptor II (ACE2), drugs which interact with the renin angiotensin aldosterone system (RAAS) were suspected to influence disease severity.
Methods and results: We analyzed 1946 consecutive patients with cardiovascular comorbidities or hypertension enrolled in one of the largest European COVID-19 registries, the Lean European Open Survey on SARS-CoV-2 (LEOSS) registry. Here, we show that angiotensin II receptor blocker intake is associated with decreased mortality in patients with COVID-19 [OR 0.75 (95% CI 0,59–0.96; p = 0.013)]. This effect was mainly driven by patients, who presented in an early phase of COVID-19 at baseline [OR 0,64 (95% CI 0,43–0,96; p = 0.029)]. Kaplan-Meier analysis revealed a significantly lower incidence of death in patients on an angiotensin receptor blocker (ARB) (n = 33/318;10,4%) compared to patients using an angiotensin-converting enzyme inhibitor (ACEi) (n = 60/348;17,2%) or patients who received neither an ACE-inhibitor nor an ARB at baseline in the uncomplicated phase (n = 90/466; 19,3%; p<0.034). Patients taking an ARB were significantly less frequently reaching the mortality predicting threshold for leukocytes (p<0.001), neutrophils (p = 0.002) and the inflammatory markers CRP (p = 0.021), procalcitonin (p = 0.001) and IL-6 (p = 0.049). ACE2 expression levels in human lung samples were not altered in patients taking RAAS modulators.
Conclusion: These data suggest a beneficial effect of ARBs on disease severity in patients with cardiovascular comorbidities and COVID-19, which is linked to dampened systemic inflammatory activity.
Background and purpose: During acute coronavirus disease 2019 (COVID-19) infection, neurological signs, symptoms and complications occur. We aimed to assess their clinical relevance by evaluating real-world data from a multinational registry. Methods: We analyzed COVID-19 patients from 127 centers, diagnosed between January 2020 and February 2021, and registered in the European multinational LEOSS (Lean European Open Survey on SARS-Infected Patients) registry. The effects of prior neurological diseases and the effect of neurological symptoms on outcome were studied using multivariate logistic regression. Results: A total of 6537 COVID-19 patients (97.7% PCR-confirmed) were analyzed, of whom 92.1% were hospitalized and 14.7% died. Commonly, excessive tiredness (28.0%), headache (18.5%), nausea/emesis (16.6%), muscular weakness (17.0%), impaired sense of smell (9.0%) and taste (12.8%), and delirium (6.7%) were reported. In patients with a complicated or critical disease course (53%) the most frequent neurological complications were ischemic stroke (1.0%) and intracerebral bleeding (ICB; 2.2%). ICB peaked in the critical disease phase (5%) and was associated with the administration of anticoagulation and extracorporeal membrane oxygenation (ECMO). Excessive tiredness (odds ratio [OR] 1.42, 95% confidence interval [CI] 1.20–1.68) and prior neurodegenerative diseases (OR 1.32, 95% CI 1.07–1.63) were associated with an increased risk of an unfavorable outcome. Prior cerebrovascular and neuroimmunological diseases were not associated with an unfavorable short-term outcome of COVID-19. Conclusion: Our data on mostly hospitalized COVID-19 patients show that excessive tiredness or prior neurodegenerative disease at first presentation increase the risk of an unfavorable short-term outcome. ICB in critical COVID-19 was associated with therapeutic interventions, such as anticoagulation and ECMO, and thus may be an indirect complication of a life-threatening systemic viral infection.
Objective: Combination antiretroviral therapy (cART) has markedly increased survival and quality of life in people living with HIV. With the advent of new treatment options, including single-tablet regimens, durability and efficacy of first-line cART regimens are evolving.
Methods: We analyzed data from the prospective multicenter German Clinical Surveillance of HIV Disease (ClinSurv) cohort of the Robert-Koch Institute. Kaplan–Meier and Cox proportional hazards models were run to examine the factors associated with treatment modification. Recovery after treatment initiation was analyzed comparing pre-cART viral load and CD4+ T-cell counts with follow-up data.
Results: We included 8788 patients who initiated cART between 2005 and 2017. The sample population was predominantly male (n = 7040; 80.1%), of whom 4470 (63.5%) were reporting sex with men as the transmission risk factor. Overall, 4210 (47.9%) patients modified their first-line cART after a median time of 63 months (IQR 59–66). Regimens containing integrase strand transfer inhibitors (INSTI) were associated with significantly lower rates of treatment modification (adjusted hazard ratio 0.44; 95% CI 0.39–0.50) compared to protease inhibitor (PI)-based regimens. We found a decreased durability of first-line cART significantly associated with being female, a low CD4+ T-cell count, cART initiation in the later period (2011–2017), being on a multi-tablet regimen (MTR).
Conclusions: Drug class and MTRs are significantly associated with treatment modification. INSTI-based regimens showed to be superior compared to PI-based regimens in terms of durability.
Correction to: Infection (2020) 48:723–733 https://doi.org/10.1007/s15010-020-01469-6. The original version of this article unfortunately contained a mistake. In this article the authors Dirk Schürmann at affiliation Charité, University Medicine, Berlin, Olaf Degen at affiliation University Clinic Hamburg Eppendorf, Hamburg and Heinz-August Horst at affiliation University Hospital Schleswig–Holstein, Kiel, Germany were missing from the author list. The original article has been corrected.